About this Journal Submit a Manuscript Table of Contents
ISRN Organic Chemistry
Volume 2013 (2013), Article ID 417672, 27 pages
http://dx.doi.org/10.1155/2013/417672
Review Article

Chemical Modification of Polysaccharides

Private Practice, UK

Received 15 May 2013; Accepted 9 June 2013

Academic Editors: D. K. Chand and E. Lee-Ruff

Copyright © 2013 Ian Cumpstey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Yalpani, “A survey of recent advances in selective chemical and enzymic polysaccharide modifications,” Tetrahedron, vol. 41, no. 15, pp. 2957–3020, 1985. View at Scopus
  2. A. Corma, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Chemical Reviews, vol. 107, no. 6, pp. 2411–2502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Van de Vyver, J. Geboers, P. A. Jacobs, and B. F. Sels, “Recent advances in the catalytic conversion of cellulose,” ChemCatChem, vol. 3, no. 1, pp. 82–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. G. Cunha and A. Gandini, “Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates,” Cellulose, vol. 17, no. 6, pp. 1045–1065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. T. L. Vigo and N. Sachinvala, “Deoxycelluloses and related structures,” Polymers for Advanced Technologies, vol. 10, no. 6, pp. 311–320, 1999. View at Scopus
  6. T. Heinze and T. Liebert, “Unconventional methods in cellulose functionalization,” Progress in Polymer Science, vol. 26, no. 9, pp. 1689–1762, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Liebert and T. Heinze, “Interaction of ionic liquids wlth polysaccharides 5. Solvents and reaction media for the modification of cellulose,” BioResources, vol. 3, no. 2, pp. 576–601, 2008. View at Scopus
  8. M. Gericke, P. Fardim, and T. Heinze, “Ionic liquids-promising but challenging solvents for homogeneous derivatization of cellulose,” Molecules, vol. 17, no. 6, pp. 7458–7502, 2012. View at Publisher · View at Google Scholar
  9. S. Murugesana and R. J. Linhardt, “Ionic liquids in carbohydrate chemistry-current trends and future directions,” Current Organic Synthesis, vol. 2, no. 4, pp. 437–451, 2005. View at Publisher · View at Google Scholar
  10. A. W. T. King, J. Asikkala, I. Mutikainen, P. Järvi, and I. Kilpeläinen, “Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing,” Angewandte Chemie International Edition, vol. 50, no. 28, pp. 6301–6305, 2011. View at Publisher · View at Google Scholar
  11. A. Takaragi, M. Minoda, T. Miyamoto, H. Q. Liu, and L. N. Zhang, “Reaction characteristics of cellulose in the LiCl/1,3-dimethyl-2-imidazolidinone solvent system,” Cellulose, vol. 6, no. 2, pp. 93–102, 1999. View at Scopus
  12. A. Isogai, A. Ishizu, and J. Nakano, “Preparation of tri-O-benzylcellulose by the use of nonaqueous cellulose solvents,” Journal of Applied Polymer Science, vol. 29, no. 6, pp. 2097–2109, 1984. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Isogai, A. Ishizu, and J. Nakano, “Preparation of tri-O-substituted cellulose ethers by the use of a nonaqueous cellulose solvent,” Journal of Applied Polymer Science, vol. 29, no. 12, pp. 3873–3882, 1984. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Isogai, A. Ishizu, and J. Nakano, “Preparation of tri-O-alkylcelluloses by the use of a nonaqueous cellulose solvent and their physical characteristics,” Journal of Applied Polymer Science, vol. 31, no. 2, pp. 341–352, 1986. View at Scopus
  15. C. L. McCormick and P. A. Callais, “Derivatization of cellulose in lithium chloride and N,N-dimethylacetamide solutions,” Polymer, vol. 28, no. 13, pp. 2317–2323, 1987. View at Scopus
  16. L. Petrus, D. G. Gray, and J. N. BeMiller, “Homogeneous alkylation of cellulose in lithium chloride/dimethyl sulfoxide solvent with dimsyl sodium activation. A proposal for the mechanism of cellulose dissolution in LiCl/Me2SO,” Carbohydrate Research, vol. 268, no. 2, pp. 319–323, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Asikkala, Acta Universitatis Ouluensis 502, 2008.
  18. M. Söderqvist Lindblad and A.-C. Albertsson, “Chemical modification of hemicelluloses and gums,” in Polysaccharides: Structural Diversity and Function, S. Dumitriu, Ed., p. 491, CRC Press, New York, NY, USA.
  19. J. N. BeMiller and R. E. Wing, “Methyl terminal-4-O-methylmalto-oligosaccharides,” Carbohydrate Research, vol. 6, no. 2, pp. 197–206, 1968. View at Scopus
  20. R. Pieters, R. A. De Graaf, and L. P. B. M. Janssen, “The kinetics of the homogeneous benzylation of potato starch in aqueous solutions,” Carbohydrate Polymers, vol. 51, no. 4, pp. 375–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Umemura, M. Hirakawa, Y. Yoshida, and K. Kurita, “Quantitative protection of chitin by one-step tritylation and benzylation to synthesize precursors for chemical modifications,” Polymer Bulletin, vol. 69, no. 3, pp. 303–312, 2012. View at Publisher · View at Google Scholar
  22. O. Somorin, N. Nishi, S. Tokura, and J. Noguchi, “Studies on chitin-2. Preparation of benzyl and benzoylchitins,” Polymer Journal, vol. 11, no. 5, pp. 391–396, 1979. View at Scopus
  23. N. Teramoto, T. Motoyama, R. Yosomiya, and M. Shibata, “Synthesis and properties of thermoplastic propyl-etherified amylose,” European Polymer Journal, vol. 38, no. 7, pp. 1365–1369, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Shibata, R. Nozawa, N. Teramoto, and R. Yosomiya, “Synthesis and properties of etherified pullulans,” European Polymer Journal, vol. 38, no. 3, pp. 497–501, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Petzold, K. Schwikal, and T. Heinze, “Carboxymethyl xylan-synthesis and detailed structure characterization,” Carbohydrate Polymers, vol. 64, no. 2, pp. 292–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. J. Tanghe, L. B. Genung, and J. W. Mensch, “Cellulose acetate,” in Methods in Carbohydrate Chemistry, Vol III, Cellulose, R. L. Whistler, Ed., pp. 193–212, Academic Press, New York, NY, USA, 1963.
  27. C. L. McCormick and P. A. Callais, “Derivatization of cellulose in lithium chloride and N,N-dimethylacetamide solutions,” Polymer, vol. 28, no. 13, pp. 2317–2323, 1987. View at Scopus
  28. C. Grote and T. Heinze, “Starch derivatives of high degree of functionalization 11: studies on alternative acylation of starch with long-chain fatty acids homogeneously in N,N-dimethyl acetamide/LiCl,” Cellulose, vol. 12, no. 4, pp. 435–444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Belmokaddem, C. Pinel, P. Huber, M. Petit-Conil, and D. Da Silva Perez, “Green synthesis of xylan hemicellulose esters,” Carbohydrate Research, vol. 346, no. 18, pp. 2896–2904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Gröndahl, A. Teleman, and P. Gatenholm, “Effect of acetylation on the material properties of glucuronoxylan from aspen wood,” Carbohydrate Polymers, vol. 52, no. 4, pp. 359–366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. R. C. Sun, J. M. Fang, J. Tomkinson, and C. A. S. Hill, “Esterification of hemicelluloses from poplar chips in homogenous solution of N, N-dimethylformamide/lithium chloride,” Journal of Wood Chemistry and Technology, vol. 19, no. 4, pp. 287–306, 1999. View at Publisher · View at Google Scholar
  32. T. Heinze, T. F. Liebert, K. S. Pfeiffer, and M. A. Hussain, “Unconventional cellulose esters: synthesis, characterization and structure-property relations,” Cellulose, vol. 10, no. 3, pp. 283–296, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Wu, J. Zhang, H. Zhang, J. He, Q. Ren, and M. Guo, “Homogeneous acetylation of cellulose in a new ionic liquid,” Biomacromolecules, vol. 5, no. 2, pp. 266–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Heinze, K. Schwikal, and S. Barthel, “Ionic liquids as reaction medium in cellulose functionalization,” Macromolecular Bioscience, vol. 5, no. 6, pp. 520–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. E. Sealey, G. Samaranayake, J. G. Todd, and W. G. Glasser, “Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose,” Journal of Polymer Science B, vol. 34, no. 9, pp. 1613–1620, 1996. View at Scopus
  36. S. N. Pawar and K. J. Edgar, “Chemical modification of alginates in organic solvent systems,” Biomacromolecules, vol. 12, no. 11, pp. 4095–4103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. E. I. Badawy, E. I. Rabea, T. M. Rogge et al., “Fungicidal and insecticidal activity of O-acyl chitosan derivatives,” Polymer Bulletin, vol. 54, no. 4-5, pp. 279–289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. R. Labafzadeh, J. S. Kavakka, K. Sievänen, J. Asikkala, and I. Kilpeläinen, “Reactive dissolution of cellulose and pulp through acylation in pyridine,” Cellulose, vol. 19, no. 4, pp. 1295–1304, 2012. View at Publisher · View at Google Scholar
  39. K. Arai, S. Sano, and H. Satoh, “Preparation of cellulose stilbene-4-carboxylate and its application to thin-layer chromatography,” Journal of Materials Chemistry, vol. 2, no. 12, pp. 1257–1260, 1992. View at Publisher · View at Google Scholar
  40. K. Arai and S. Sano, “Preparation of cellulose 2-methylstilbene-5-carboxylate and photoregulation of its properties,” Journal of Materials Chemistry, vol. 4, no. 2, pp. 275–278, 1994. View at Publisher · View at Google Scholar
  41. C. M. Buchanan, N. L. Buchanan, J. S. Debenham et al., “Preparation and characterization of arabinoxylan esters,” ACS Symposium Series, vol. 864, pp. 326–346, 2004. View at Scopus
  42. T. Iwata, A. Fukushima, K. Okamura, and J. Azuma, “DSC study on regioselectively substituted cellulose heteroesters,” Journal of Applied Polymer Science, vol. 65, no. 8, pp. 1511–1515, 1997. View at Scopus
  43. E. Pascu, “Halogenation,” in Methods in Carbohydrate Chemistry, Vol III, Cellulose, R. L. Whistler, Ed., p. 259, Academic Press, New York, NY, USA, 1963.
  44. K. Rahn, M. Diamantoglou, D. Klemm, H. Berghmans, and T. Heinze, “Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system,” Angewandte Makromolekulare Chemie, vol. 238, pp. 143–163, 1996. View at Scopus
  45. S. C. Fox, B. Li, D. Xu, and K. J. Edgar, “Regioselective esterification and etherification of cellulose: a review,” Biomacromolecules, vol. 12, no. 6, pp. 1956–1972, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Morita, Y. Sugahara, A. Takahashi, and M. Ibonai, “Preparation of chitin-p-toluenesulfonate and deoxy(thiocyanato) chitin,” European Polymer Journal, vol. 30, no. 11, pp. 1231–1236, 1994. View at Scopus
  47. A. F. Kolova, V. P. Komar, I. V. Skornyakov, A. D. Virnik, R. G. Zhbanov, and Z. A. Rogovin, Cellulose Chemistry and Technology, vol. 12, p. 553, 1978.
  48. G. Mocanu, M. Constantin, and A. Carpov, “Chemical reactions on polysaccharides, 5. Reaction of mesyl chloride with pullulan,” Die Angewandte Makromolekulare Chemie, vol. 241, no. 1, pp. 1–10, 1996. View at Publisher · View at Google Scholar
  49. D. Klemm, T. Helme, B. Philipp, and W. Wagenbiecht, “New approaches to advanced polymers by selective cellulose functionalization,” Acta Polymerica, vol. 48, no. 8, pp. 277–297, 1997. View at Scopus
  50. A. Koschella, D. Fenn, N. Illy, and T. Heinze, “Regioselectively functionalized cellulose derivatives: a mini review,” Macromolecular Symposia, vol. 244, pp. 59–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. W. Green, “Triphenylmethyl ethers,” in Methods in Carbohydrate Chemistry, Vol III, Cellulose, R. L. Whistler, Ed., p. 327, Academic Press, New York, NY, USA, 1963.
  52. R. L. Whistler and S. Hirase, “Introduction of 3,6-anhydro rings into amylose and characterization of the products,” Journal of Organic Chemistry, vol. 26, no. 11, pp. 4600–4605, 1961. View at Scopus
  53. J. Holappa, T. Nevalainen, P. Soininen et al., “N-chloroacyl-6-O-triphenylmethylchitosans: useful intermediates for synthetic modifications of chitosan,” Biomacromolecules, vol. 6, no. 2, pp. 858–863, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Klemm and A. J. Stein, “Silylated cellulose materials in design of supramolecular structures of ultrathin cellulose films,” Journal of Macromolecular Science A, vol. 32, no. 4, pp. 899–904, 1995. View at Publisher · View at Google Scholar
  55. A. Koschella and D. Klemm, “Silylation of cellulose regiocontrolled by bulky reagents and dispersity in the reaction media,” Macromolecular Symposia, vol. 120, pp. 115–125, 1997. View at Scopus
  56. A. Koschella, T. Heinze, and D. Klemm, “First synthesis of 3-O-functionalized cellulose ethers via 2,6-di-O-protected silyl cellulose,” Macromolecular Bioscience, vol. 1, no. 1, pp. 49–54, 2001.
  57. D. Klemm, B. Heublein, H. Fink, and A. Bohn, “Cellulose: fascinating biopolymer and sustainable raw material,” Angewandte Chemie International Edition, vol. 44, no. 22, pp. 3358–3393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Xu, B. Li, C. Tate, and K. J. Edgar, “Studies on regioselective acylation of cellulose with bulky acid chlorides,” Cellulose, vol. 18, no. 2, pp. 405–419, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Zhang, J. Wu, Y. Cao, S. Sang, J. Zhang, and J. He, “Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid,” Cellulose, vol. 16, no. 2, pp. 299–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Stein and D. Klemm, “Syntheses of cellulose derivatives via O-triorganosilyl celluloses, 1. Effective synthesis of organic cellulose esters by acylation of trimethylsilyl celluloses,” Die Makromolekulare Chemie, Rapid Communications, vol. 9, no. 8, pp. 569–573, 1988. View at Publisher · View at Google Scholar
  61. A. Koschella, T. Leermann, M. Brackhagen, and T. Heinze, “Study of sulfonic acid esters from 1→4-, 1→3-, and 1→6-linked polysaccharides,” Journal of Applied Polymer Science, vol. 100, no. 3, pp. 2142–2150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Dicke, K. Rahn, V. Haack, and T. Heinze, “Starch derivatives of high degree of functionalization. Part 2. Determination of the functionalization pattern of p-toluenesulfonyl starch by peracylation and NMR spectroscopy,” Carbohydrate Polymers, vol. 45, no. 1, pp. 43–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. D. M. Clode and D. Horton, “Preparation and characterization of the 6-aldehydo derivatives of amylose and whole starch,” Carbohydrate Research, vol. 17, no. 2, pp. 365–373, 1971. View at Scopus
  64. J. Ren, P. Wang, F. Dong, Y. Feng, D. Peng, and Z. Guo, “Synthesis and antifungal properties of 6-amino-6-deoxyinulin, a kind of precursors for facile chemical modifications of inulin,” Carbohydrate Polymers, vol. 87, no. 2, pp. 1744–1748, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. H. N. Cheng and Q. M. Gu, “Enzyme-catalyzed modifications of polysaccharides and poly(ethylene glycol),” Polymers, vol. 4, no. 2, pp. 1311–1330, 2012. View at Publisher · View at Google Scholar
  66. F. F. Bruno, J. A. Akkara, M. Ayyagari et al., “Enzymatic modification of insoluble amylose in organic solvents,” Macromolecules, vol. 28, no. 26, pp. 8881–8883, 1995. View at Scopus
  67. J. Xie and Y. Hsieh, “Enzyme-catalyzed transesterification of vinyl esters on cellulose solids,” Journal of Polymer Science A, vol. 39, no. 11, pp. 1931–1939, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Chakraborty, B. Sahoo, I. Teraoka, L. M. Miller, and R. A. Gross, “Enzyme-catalyzed regioselective modification of starch nanoparticles,” Macromolecules, vol. 38, no. 1, pp. 61–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Alissandratos, N. Baudendistel, S. L. Flitsch, B. Hauer, and P. J. Halling, “Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC,” BMC Biotechnology, vol. 10, p. 82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Yang and Y. J. Wang, “Lipase-catalyzed cellulose acetylation in aqueous and organic media,” Biotechnology Progress, vol. 19, no. 6, pp. 1664–1671, 2003. View at Publisher · View at Google Scholar
  71. K. Yang, Y. J. Wang, and M. I. Kuo, “Effects of substrate pretreatment and water activity on lipase-catalyzed cellulose acetylation in organic media,” Biotechnology Progress, vol. 20, no. 4, pp. 1053–1061, 2004. View at Publisher · View at Google Scholar
  72. A. Rajan, V. S. Prasad, and T. E. Abraham, “Enzymatic esterification of starch using recovered coconut oil,” International Journal of Biological Macromolecules, vol. 39,, no. 4-5, pp. 265–272, 2006. View at Publisher · View at Google Scholar
  73. A. Rajan and T. E. Abraham, “Enzymatic modification of cassava starch by bacterial lipase,” Bioprocess and Biosystems Engineering, vol. 29, no. 1, pp. 65–71, 2006. View at Publisher · View at Google Scholar
  74. A. Rajan, J. D. Sudha, and T. E. Abraham, “Enzymatic modification of cassava starch by fungal lipase,” Industrial Crops and Products, vol. 27, no. 1, pp. 50–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Sereti, H. Stamatis, E. Koukios, and F. N. Kolisis, “Enzymatic acylation of cellulose acetate in organic media,” Journal of Biotechnology, vol. 66, no. 2-3, pp. 219–223, 1998. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Altaner, B. Saake, M. Tenkanen et al., “Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families,” Journal of Biotechnology, vol. 105, no. 1-2, pp. 95–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. R. S. Tipson, “Sulfonic esters of carbohydrates,” Advances in Carbohydrate Chemistry, vol. 8, pp. 180–215, 1953. View at Publisher · View at Google Scholar
  78. J. W. H. Oldham and J. K. Rutherford, “The alkylation of amines as catalyzed by nickel,” Journal of the American Chemical Society, vol. 54, no. 1, pp. 306–312, 1932. View at Publisher · View at Google Scholar
  79. S. S. Shaik, “The α- and β-carbon substituent effect on SN2 reactivity. A valence-bond approach,” Journal of the American Chemical Society, vol. 105, no. 13, pp. 4359–4367, 1983. View at Publisher · View at Google Scholar
  80. K. Petzold-Welcke, N. Michaelis, and T. Heinze, “Unconventional cellulose products through nucleophilic displacement reactions,” Macromolecular Symposia, vol. 280, no. 1, pp. 72–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. P. R. Skaanderup, C. S. Poulsen, L. Hyldtoft, M. R. Jørgensen, and R. Madsen, “Regioselective conversion of primary alcohols into iodides in unprotected methyl furanosides and pyranosides,” Synthesis, no. 12, pp. 1721–1727, 2002. View at Scopus
  82. A. L. Cimecioglu, D. H. Ball, D. L. Kaplan, and S. H. Huang, “Preparation of 6-O-acyl amylose derivatives,” in Proceedings of the MRS Symposium, pp. 7–12, December 1993. View at Scopus
  83. D. H. Ball, B. J. Wiley, and E. T. Reese, “Effect of substitution at C-6 on the susceptibility of pullulan to pullulanases. Enzymatic degradation of modified pullulans,” Canadian Journal of Microbiology, vol. 38, no. 4, pp. 324–327, 1992. View at Publisher · View at Google Scholar
  84. H. Tseng, K. Takechi, and K. Furuhata, “Chlorination of chitin with sulfuryl chloride under homogeneous conditions,” Carbohydrate Polymers, vol. 33, no. 1, pp. 13–18, 1997. View at Scopus
  85. M. Sakamoto, H. Tseng, and K. Furuhata, “Regioselective chlorination of chitin with N-chlorosuccinimide-triphenylphosphine under homogeneous conditions in lithium chloride-N,N-dimethylacetamide,” Carbohydrate Research, vol. 265, no. 2, pp. 271–280, 1994. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Furuhata, N. Aoki, S. Suzuki, M. Sakamoto, Y. Saegusa, and S. Nakamura, “Bromination of cellulose with tribromoimidazole, triphenylphosphine and imidazole under homogeneous conditions in LiBr-dimethylacetamide,” Carbohydrate Polymers, vol. 26, no. 1, pp. 25–29, 1995. View at Scopus
  87. K.-I. Furuhata, K. Koganei, H.-S. Chang, N. Aoki, and M. Sakamoto, “Dissolution of cellulose in lithium bromide-organic solvent systems and homogeneous bromination of cellulose with N-bromosuccinimide-triphenylphosphine in lithium bromide-N,N-dimethylacetamide,” Carbohydrate Research, vol. 230, no. 1, pp. 165–177, 1992. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Matsui, J. Ishikawa, H. Kamitakahara, T. Takano, and F. Nakatsubo, “Facile synthesis of 6-amino-6-deoxycellulose,” Carbohydrate Research, vol. 340, no. 7, pp. 1403–1406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Tseng, K. Furuhata, and M. Sakamoto, “Bromination of regenerated chitin with N-bromosuccinimide and triphenylphospine under homogeneous conditions in lithium bromide-N,N-dimethylacetamide,” Carbohydrate Research, vol. 270, no. 2, pp. 149–161, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Hasegawa, M. Umeda, M. Numata et al., “‘Click chemistry’ on polysaccharides: a convenient, general, and monitorable approach to develop (1→3)-β-d-glucans with various functional appendages,” Carbohydrate Research, vol. 341, no. 1, pp. 35–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. G. N. Smirnova, L. S. Gol’braikh, A. I. Polyakov, and Z. A. Rogovin, “Synthesis of 2, 3-anhydro-6-O-tritylcellulose,” Chemistry of Natural Compounds, vol. 2, no. 1, pp. 1–3, 1966. View at Publisher · View at Google Scholar
  92. S. Immel, K. Fujita, H. J. Lindner, Y. Nogami, and F. W. Lichtenthaler, “Structure and lipophilicity profile of 2,3-anhydro-α-cyclomannin and its ethanol inclusion complex,” Chemistry A, vol. 6, no. 13, pp. 2327–2333, 2000. View at Scopus
  93. Z. A. Rogovin and T. V. Vladimirov, Chimičeskaja Nauka i Promyšlennost, vol. 2, p. 527, 1957.
  94. Z. A. Rogovin and T. V. Vladimirov, Chemical Abstracts, vol. 52, p. 4167, 1958.
  95. T. R. Ingle and R. L. Whistler, “3,6-anhydroamylose by nucleophilic displacement,” in Methods in Carbohydrate Chemistry, Vol 5, General Polysaccharides, R. L. Whistler, Ed., p. 411, Academic Press, New York, NY, USA, 1963.
  96. I. Cumpstey, J. Frigell, E. Pershagen et al., “Amine-linked diglycosides: synthesis facilitated by the enhanced reactivity of allylic electrophiles, and glycosidase inhibition assays,” Beilstein Journal of Organic Chemistry, vol. 7, pp. 1115–1123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Heinze, A. Koschella, M. Brackhagen, J. Engelhardt, and K. Nachtkamp, “Studies on non-natural deoxyammonium cellulose,” Macromolecular Symposia, vol. 244, pp. 74–82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. C. Liu and H. Baumann, “Exclusive and complete introduction of amino groups and their N-sulfo and N-carboxymethyl groups into the 6-position of cellulose without the use of protecting groups,” Carbohydrate Research, vol. 337, no. 14, pp. 1297–1307, 2002. View at Publisher · View at Google Scholar
  99. Y. Matsui, J. Ishikawa, H. Kamitakahara, T. Takano, and F. Nakatsubo, “Facile synthesis of 6-amino-6-deoxycellulose,” Carbohydrate Research, vol. 340, no. 7, pp. 1403–1406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Takano, J. Ishikawa, H. Kamitakahara, and F. Nakatsubo, “The application of microwave heating to the synthesis of 6-amino-6-deoxycellulose,” Carbohydrate Research, vol. 342, no. 16, pp. 2456–2460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Xiao, D. Lu, S. Xu, and L. Huang, “Tunable synthesis of starch-poly(vinyl acetate) bioconjugate,” Starch-Stärke, vol. 63, no. 4, pp. 209–216, 2011. View at Publisher · View at Google Scholar
  102. G. Zampano, M. Bertoldo, and F. Ciardelli, “Defined chitosan-based networks by C-6-azide-alkyne “click” reaction,” Reactive and Functional Polymers, vol. 70, no. 5, pp. 272–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. A. L. Cimecioglu, D. H. Ball, S. H. Huang, and D. L. Kaplan, “A direct regioselective route to 6-azido-6-deoxy polysaccharides under mild and homogeneous conditions,” Macromolecules, vol. 30, no. 1, pp. 155–156, 1997. View at Scopus
  104. J. Shey, K. M. Holtman, R. Y. Wong et al., “The azidation of starch,” Carbohydrate Polymers, vol. 65, no. 4, pp. 529–534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Knaus, U. Mais, and W. H. Binder, “Synthesis, characterization and properties of methylaminocellulose,” Cellulose, vol. 10, no. 2, pp. 139–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Liu and H. Baumann, “New 6-butylamino-6-deoxycellulose and 6-deoxy-6-pyridiniumcellulose derivatives with highest regioselectivity and completeness of reaction,” Carbohydrate Research, vol. 340, no. 14, pp. 2229–2235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. G. R. Saad and K.-I. Furuhata, “Dielectric study of β-relaxation in some cellulosic substances,” Polymer International, vol. 41, no. 3, pp. 293–299, 1996. View at Publisher · View at Google Scholar
  108. A. Koschella and T. Heinze, “Novel regioselectively 6-functionalized cationic cellulose polyelectrolytes prepared via cellulose sulfonates,” Macromolecular Bioscience, vol. 1, no. 5, pp. 178–184, 2001.
  109. N. Aoki, K. Koganei, H. Chang, K. Furuhata, and M. Sakamoto, “Gas chromatographic-mass spectrometric study of reactions of halodeoxycelluloses with thiols in aqueous solutions,” Carbohydrate Polymers, vol. 27, no. 1, pp. 13–21, 1995. View at Scopus
  110. N. Aoki, K. Furuhata, Y. Saegusa, S. Nakamura, and M. Sakamoto, “Reaction of 6-bromo-6-deoxycellulose with thiols in lithium bromide-N,N-dimethylacetamide,” Journal of Applied Polymer Science, vol. 61, no. 7, pp. 1173–1185, 1996. View at Scopus
  111. G. Wenz, P. Liepold, and N. Bordeanu, “Synthesis and SAM formation of water soluble functional carboxymethylcelluloses: thiosulfates and thioethers,” Cellulose, vol. 12, no. 1, pp. 85–96, 2005. View at Publisher · View at Google Scholar
  112. N. Aoki, K. Fukushima, H. Kurakata, M. Sakamoto, and K. Furuhata, “6-Deoxy-6-mercaptocellulose and its S-substituted derivatives as sorbents for metal ions,” Reactive and Functional Polymers, vol. 42, no. 3, pp. 223–233, 1999. View at Publisher · View at Google Scholar · View at Scopus
  113. G. R. Saad and K. Furuhata, “Effect of substituents on dielectric β-relaxation in cellulose,” Polymer International, vol. 42, no. 4, pp. 356–362, 1997. View at Scopus
  114. D. Horton and D. H. Hutson, “Developments in the chemistry of thio sugars,” Advances in Carbohydrate Chemistry C, vol. 18, pp. 123–199, 1963. View at Publisher · View at Google Scholar · View at Scopus
  115. D. Trimnell, E. I. Stout, W. M. Doane, and C. R. Russel, “Preparation of starch 2-hydroxy-3-mercaptopropyl ethers and their use in graft polymerizations,” Journal of Applied Polymer Science, vol. 22, no. 12, pp. 3579–3586, 1978. View at Publisher · View at Google Scholar · View at Scopus
  116. E. Mentasti, C. Sarzanini, M. C. Gennaro, and V. Porta, “Nitrilotriacetic acid, thiourea and cysteine ligands immobilized on cellulose for the uptake of trace metal ions,” Polyhedron, vol. 6, no. 6, pp. 1197–1202, 1987. View at Scopus
  117. I. Cumpstey, “Neodisaccharide diglycosyl compounds: ethers, thioethers and selenoethers. A survey of their synthesis and biological activity,” Comptes Rendus Chimie, vol. 14, no. 2-3, pp. 274–285, 2011. View at Publisher · View at Google Scholar
  118. V. Fournière and I. Cumpstey, “Synthesis of non-glycosidically linked selenoether pseudodisaccharides,” Tetrahedron Letters, vol. 51, no. 16, pp. 2127–2129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. K. A. Kristiansen, A. Potthast, and B. E. Christensen, “Periodate oxidation of polysaccharides for modification of chemical and physical properties,” Carbohydrate Research, vol. 345, no. 10, pp. 1264–1271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Coseri, G. Biliuta, B. C. Simionescu, K. Stana-Kleinschek, V. Ribitsch, and V. Harabagiu, “Oxidized cellulose-Survey of the most recent achievements,” Carbohydrate Polymers, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. Van Bekkum, “Studies on selective carbohydrate oxidation,” in Carbohydrates as Organic Raw Materials, F. Lichtenthaler, Ed., p. 289, VCH, Weinheim, Germany, 1990.
  122. G. O. Aspinall and A. Nicolson, “Paper 505. The catalytic oxidation of European larch ε-galactan,” Journal of the Chemical Society, pp. 2503–2507, 1960. View at Scopus
  123. D. L. Verraest, J. A. Peters, and H. Van Bekkum, “The platinum-catalyzed oxidation of inulin,” Carbohydrate Research, vol. 306, no. 1-2, pp. 197–203, 1998. View at Publisher · View at Google Scholar · View at Scopus
  124. G. O. Aspinall, “Reduction of uronic acids in polysaccharides,” in Methods in Carbohydrate Chemistry, Vol 5, General Polysaccharides, R. L. Whistler, Ed., p. 397, Academic Press, New York, NY, USA, 1963.
  125. A. E. J. de Nooy, A. C. Besemer, and H. van Bekkum, “Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides,” Recueil des Travaux Chimiques des Pays-Bas, vol. 113, no. 3, pp. 165–166, 1994. View at Scopus
  126. A. E. J. De Nooy, A. C. Besemer, and H. Van Bekkum, “Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans,” Carbohydrate Research, vol. 269, no. 1, pp. 89–98, 1995. View at Publisher · View at Google Scholar · View at Scopus
  127. P. S. Chang and J. F. Robyt, “Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion,” Journal of Carbohydrate Chemistry, vol. 15, no. 7, pp. 819–830, 1996. View at Scopus
  128. A. Isogai and Y. Kato, “Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation,” Cellulose, vol. 5, no. 3, pp. 153–164, 1998. View at Scopus
  129. R. A. A. Muzzarelli, C. Muzzarelli, A. Cosani, and M. Terbojevich, “6-Oxychitins, novel hyaluronan-like regiospecifically carboxylated chitins,” Carbohydrate Polymers, vol. 39, no. 4, pp. 361–367, 1999. View at Publisher · View at Google Scholar · View at Scopus
  130. P. L. Bragd, A. C. Besemer, and H. Van Bekkum, “Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl α-d-glucopyranoside,” Carbohydrate Research, vol. 328, no. 3, pp. 355–363, 2000. View at Publisher · View at Google Scholar · View at Scopus
  131. K. Maurer and G. Drefahl, “Oxydationen mit stickstoffdioxyd, I. Mitteil.: die Darstellung von glyoxylsäure, glucuronsäure und galakturonsäure,” Berichte der Deutschen Chemischen Gesellschaft, vol. 75, no. 12, pp. 1489–1491, 1942.
  132. E. C. Yackel and W. O. Kenyon, “The oxidation of cellulose by nitrogen dioxide,” Journal of the American Chemical Society, vol. 64, no. 1, pp. 121–127, 1942. View at Publisher · View at Google Scholar
  133. K. Parikka and M. Tenkanen, “Oxidation of methyl α-d-galactopyranoside by galactose oxidase: products formed and optimization of reaction conditions for production of aldehyde,” Carbohydrate Research, vol. 344, no. 1, pp. 14–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. K. Parikka, A. -S. Leppänen, L. Piktänen, M. Reunanen, S. Willför, and M. Tenkanen, “Oxidation of polysaccharides by galactose oxidase,” Journal of Agricultural and Food Chemistry, vol. 58, no. 1, pp. 262–271, 2010. View at Publisher · View at Google Scholar
  135. E. Frollini, W. F. Reed, M. Milas, and M. Rinaudo, “Polyelectrolytes from polysaccharides: selective oxidation of guar gum-a revisited reaction,” Carbohydrate Polymers, vol. 27, no. 2, pp. 129–135, 1995. View at Scopus
  136. M. Yalpani and L. D. Hall, “Some chemical and analytical aspects of polysaccharide modifications. 3. Formation of branched-chain, soluble chitosan derivatives,” Macromolecules, vol. 17, no. 3, pp. 272–281, 1984. View at Scopus
  137. S. Dumitriu, Polysaccharides: Structural Diversity and Functional Versatility, Marcel Dekker, New York, NY, USA, 2005.
  138. J. Yang, Y. Xie, and W. He, “Research progress on chemical modification of alginate: a review,” Carbohydrate Polymers, vol. 84, no. 1, pp. 33–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. M. D. Cathell, J. C. Szewczyk, and C. L. Schauer, “Organic modification of the polysaccharide alginate,” Mini-Reviews in Organic Chemistry, vol. 7, no. 1, pp. 61–67, 2010. View at Scopus
  140. S. Pelletier, P. Hubert, F. Lapicque, E. Payan, and E. Dellacherie, “Amphiphilic derivatives of sodium alginate and hyaluronate: synthesis and physico-chemical properties of aqueous dilute solutions,” Carbohydrate Polymers, vol. 43, no. 4, pp. 343–349, 2000. View at Publisher · View at Google Scholar · View at Scopus
  141. C. S. Pappas, A. Malovikova, Z. Hromadkova, P. A. Tarantilis, A. Ebringerova, and M. G. Polissiou, “Determination of the degree of esterification of pectinates with decyl and benzyl ester groups by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and curve-fitting deconvolution method,” Carbohydrate Polymers, vol. 56, no. 4, pp. 465–469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. G. A. Morris, Z. Hromadkova, A. Ebringerova, A. Malovikova, J. Alföldi, and S. E. Harding, “Modification of pectin with UV-absorbing substitutents and its effect on the structural and hydrodynamic properties of the water-soluble derivatives,” Carbohydrate Polymers, vol. 48, no. 4, pp. 351–359, 2002. View at Publisher · View at Google Scholar
  143. J. S. Yang, H. B. Ren, and Y. J. Xie, “Synthesis of amidic alginate derivatives and their application in microencapsulation of λ-cyhalothrin,” Biomacromolecules, vol. 12, no. 8, pp. 2982–2987, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. F. Vallée, C. Müller, A. Durand et al., “Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives,” Carbohydrate Research, vol. 344, no. 2, pp. 223–228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Synytsya, J. Copikova, M. Marounek et al., “Preparation of N-alkylamides of highly methylated (HM) citrus pectin,” Czech Journal of Food Sciences, vol. 21, pp. 162–166, 2003.
  146. A. Sinitsya, J. Copikova, V. Prutyanov, S. Skoblya, and V. Machovic, “Amidation of highly methoxylated citrus pectin with primary amines,” Carbohydrate Polymers, vol. 42, no. 4, pp. 359–368, 2000. View at Publisher · View at Google Scholar
  147. A. Synytsya, J. Copikova, M. Marounek et al., “N-octadecylpectinamide, a hydrophobic sorbent based on modification of highly methoxylated citrus pectin,” Carbohydrate Polymers, vol. 56, no. 2, pp. 169–179, 2004. View at Publisher · View at Google Scholar
  148. I. Ugi, “Recent progress in the chemistry of multicomponent reactions,” Pure and Applied Chemistry, vol. 73, no. 1, pp. 187–191, 2001. View at Publisher · View at Google Scholar
  149. J. P. Zhu, “Recent developments in the isonitrile-based multicomponent synthesis of heterocycles,” European Journal of Organic Chemistry, no. 7, pp. 1133–1144, 2003. View at Publisher · View at Google Scholar
  150. P. Slobbe, E. Ruijter, and R. V. A. Orru, “Recent applications of multicomponent reactions in medicinal chemistry,” Medicinal Chemistry Communications, vol. 3, pp. 1189–1218, 2012. View at Publisher · View at Google Scholar
  151. R. V. A. Orru and E. Ruijter, Synthesis of Heterocycles via Multicomponent Reactions, Springer, Berlin, Germany, 2010.
  152. I. Ugi, R. Meyr, U. Fetzer, and C. Steinbrückner, “Versuche mit Isonitrilen,” Angewandte Chemie, vol. 71, no. 11, pp. 386–388, 1959.
  153. I. Ugi and C. Steinbrückner, “Über ein neues Kondensations-Prinzip,” Angewandte Chemie, vol. 72, no. 7-8, pp. 267–268, 1960. View at Publisher · View at Google Scholar
  154. H. Bu, A. L. Kjøniksen, K. D. Knudsen, and B. Nyström, “Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction,” Biomacromolecules, vol. 5, no. 4, pp. 1470–1479, 2004. View at Publisher · View at Google Scholar
  155. J. Desbrieres, C. Martinez, and M. Rinaudo, “Hydrophobic derivatives of chitosan: characterization and rheological behaviour,” International Journal of Biological Macromolecules, vol. 19, no. 1, pp. 21–28, 1996. View at Publisher · View at Google Scholar
  156. M. E. I. Badawy, “Chemical modification of chitosan: synthesis and biological activity of new heterocyclic chitosan derivatives,” Polymer International, vol. 57, no. 2, pp. 254–261, 2000. View at Publisher · View at Google Scholar
  157. E. I. Rabea, M. E. I. Badawy, T. M. Rogge et al., “Enhancement of fungicidal and insecticidal activity by reductive alkylation of chitosan,” Pest Management Science, vol. 62, no. 9, pp. 890–897, 2006. View at Publisher · View at Google Scholar · View at Scopus
  158. K. Tømmeraas, S. P. Strand, W. Tian, L. Kenne, and K. M. Våruma, “Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore,” Carbohydrate Research, vol. 336, no. 4, pp. 291–296, 2001. View at Publisher · View at Google Scholar
  159. S. Hirano, K. Nagamura, M. Zhang et al., “Chitosan staple fibers and their chemical modification with some aldehydes,” Carbohydrate Polymers, vol. 38, no. 4, pp. 293–298, 1999. View at Publisher · View at Google Scholar · View at Scopus
  160. D. de Britto, R. C. Goy, S. P. C. Filho, and O. B. G. Assis, “Quaternary salts of chitosan: history, antimicrobial features, and prospects,” International Journal of Carbohydrate Chemistry, vol. 2011, Article ID 312539, 12 pages, 2011. View at Publisher · View at Google Scholar
  161. V. Ö. Rúnarsson, J. Holappa, S. Jónsdóttir, H. Steinsson, and M. Másson, “N-selective “one pot” synthesis of highly N-substituted trimethyl chitosan (TMC),” Carbohydrate Polymers, vol. 74, no. 3, pp. 740–744, 2008. View at Publisher · View at Google Scholar
  162. A. B. Sieval, M. Thanou, A. F. Kotzé, J. C. Verhoef, J. Brussee, and H. E. Junginger, “Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride,” Carbohydrate Polymers, vol. 36, no. 2-3, pp. 157–165, 1998. View at Scopus
  163. P. L. Dung, M. Milas, M. Rinaudo, and J. Desbrières, “Water soluble derivatives obtained by controlled chemical modifications of chitosan,” Carbohydrate Polymers, vol. 24, no. 3, pp. 209–214, 1994. View at Scopus
  164. Z. Jia, D. Shen, and W. Xu, “Synthesis and antibacterial activities of quaternary ammonium salt of chitosan,” Carbohydrate Research, vol. 333, no. 1, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  165. S. Hirano and Y. Yagi, “The effects of N-substitution of chitosan and the physical form of the products on the rate of hydrolysis by chitinase from Streptomyces griseus,” Carbohydrate Research, vol. 83, no. 1, pp. 103–108, 1980. View at Publisher · View at Google Scholar
  166. S. Hirano, Y. Ohe, and H. Ono, “Selective N-acylation of chitosan,” Carbohydrate Research, vol. 47, no. 2, pp. 314–320, 1976. View at Publisher · View at Google Scholar
  167. K. Y. Lee, W. S. Ha, and W. H. Park, “Blood compatibility and biodegradability of partially N-acylated chitosan derivatives,” Biomaterials, vol. 16, no. 16, pp. 1211–1216, 1995. View at Publisher · View at Google Scholar · View at Scopus
  168. C. Y. Choi, S. B. Kim, P. K. Pak, D. I. Yoo, and Y. S. Chung, “Effect of N-acylation on structure and properties of chitosan fibers,” Carbohydrate Polymers, vol. 68, no. 1, pp. 122–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. T. Ishii, “Facile preparation of deoxyiodocellulose and its conversion into 5,6-cellulosene,” Carbohydrate Research, vol. 154, no. 1, pp. 63–70, 1986. View at Publisher · View at Google Scholar
  170. D. Horton and M. H. Meshreki, “Synthesis of 2.3-unsaturated polysaccharides from amylose and xylan,” Carbohydrate Research, vol. 40, no. 2, pp. 345–352, 1975. View at Scopus
  171. Z. Liu, B. Classon, and B. Samuelsson, “A novel route to olefins from vicinal diols,” Journal of Organic Chemistry, vol. 55, no. 14, pp. 4273–4275, 1990. View at Scopus
  172. B. Classon, P. J. Garegg, and B. Samuelsson, “A facile preparation of 2′,3′-unsaturated nucleosides and hexopyranosides from acetylated halohydrins by reductive elimination,” Acta Chemica Scandinavica B, vol. 36, p. 251, 1982.
  173. M. J. Robins, J. S. Wilson, D. Madej, N. H. Low, F. Hansske, and S. F. Wnuk, “Nucleic acid-related compounds. 88. Efficient conversions of ribonucleosides into their 2′,3′-anhydro, 2′(and 3′)-deoxy, 2′,3′-didehydro-2′,3′-dideoxy, and 2′,3′-dideoxynucleoside analogs,” Journal of Organic Chemistry, vol. 60, no. 24, pp. 7902–7908, 1995. View at Scopus
  174. L. Alvarez de Cienfuegos, A. J. Mota, C. Rodriguez, and R. Robles, “Highly efficient synthesis of 2′,3′-didehydro-2′,3′-dideoxy-β-nucleosides through a sulfur-mediated reductive 2′,3′-trans-elimination. From iodomethylcyclopropanes to thiirane analogs,” Tetrahedron Letters, vol. 46, no. 3, pp. 469–473, 2005. View at Publisher · View at Google Scholar