About this Journal Submit a Manuscript Table of Contents
ISRN Otolaryngology
Volume 2013 (2013), Article ID 479482, 6 pages
http://dx.doi.org/10.1155/2013/479482
Research Article

Detection of Otosclerosis-Specific Measles Virus Receptor (Cd46) Protein Isoforms

1Bajcsy-Zsilinszky Hospital, Department of Otolaryngology, Budapest, Hungary
2University of Debrecen, Medical and Health Science Center, Department of Rheumatology, Debrecen, Hungary
3University of Debrecen, Medical and Health Science Center, Department of Otolaryngology and Head and Neck Surgery, Nagyerdei Krt. 98, Debrecen 4032, Hungary

Received 12 May 2013; Accepted 5 June 2013

Academic Editors: D. C. Alpini, K. Ishikawa, T. Just, M. Sone, and D. Thurnher

Copyright © 2013 Balázs Liktor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. F. Schuknecht and W. Barber, “Histologic variants in otosclerosis,” Laryngoscope, vol. 95, no. 11, pp. 1307–1317, 1985. View at Scopus
  2. F. Declau, M. Van Spaendonck, J. P. Timmermans et al., “Prevalence of otosclerosis in an unselected series of temporal bones,” Otology and Neurotology, vol. 22, no. 5, pp. 596–602, 2001. View at Scopus
  3. T. Karosi, Z. Szekanecz, and I. Sziklai, “Otosclerosis: an autoimmune disease?” Autoimmunity Reviews, vol. 9, no. 2, pp. 95–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. A. Chole and M. McKenna, “Pathophysiology of otosclerosis,” Otology and Neurotology, vol. 22, no. 2, pp. 249–257, 2001.
  5. F. H. Linthicum Jr., “Histopathology of otosclerosis,” Otolaryngologic Clinics of North America, vol. 26, no. 3, pp. 335–352, 1993. View at Scopus
  6. T. Karosi, A. Szalmás, P. Csomor, J. Kónya, M. Petkó, and I. Sziklai, “Disease-associated novel CD46 splicing variants and pathologic bone remodeling in otosclerosis,” Laryngoscope, vol. 118, no. 9, pp. 1669–1676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Karosi, J. Kónya, M. Petkó et al., “Antimeasles immunoglobulin G for serologic diagnosis of otosclerotic hearing loss,” Laryngoscope, vol. 116, no. 3, pp. 488–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. McKenna, B. G. Mills, F. R. Galey, and F. H. Linthicum Jr., “Filamentous structures morphologically similar to viral nucleocapsids in otosclerotic lesions in two patients,” American Journal of Otology, vol. 7, no. 1, pp. 25–28, 1986. View at Scopus
  9. W. Arnold and I. Friedmann, “Otosclerosis: an inflammatory disease of the otic capsule of viral aetiology?” Journal of Laryngology and Otology, vol. 102, no. 10, pp. 865–871, 1988. View at Scopus
  10. K. Van Den Bogaert, P. J. Govaerts, E. M. R. De Leenheer et al., “Otosclerosis: a genetically heterogeneous disease involving at least three different genes,” Bone, vol. 30, no. 4, pp. 624–630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Dhiman, R. M. Jacobson, and G. A. Poland, “Measles virus receptors: SLAM and CD46,” Reviews in Medical Virology, vol. 14, no. 4, pp. 217–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. L. Karp, M. Wysocka, L. M. Wahl et al., “Mechanism of suppression of cell-mediated immunity by measles virus,” Science, vol. 273, no. 5272, pp. 228–231, 1996. View at Scopus
  13. M. Kawano, T. Seya, I. Koni, and H. Mabuchi, “Elevated serum levels of soluble membrane cofactor protein (CD46, MCP) in patients with systemic lupus erythematosus (SLE),” Clinical and Experimental Immunology, vol. 116, no. 3, pp. 542–546, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. M. B. Lanteri, M. S. Powell, D. Christiansen et al., “Inhibition of hyperacute transplant rejection by soluble proteins with the functional domains of CD46 and Fcγ/RII,” Transplantation, vol. 69, no. 6, pp. 1128–1136, 2000. View at Scopus
  15. I. Bel Hadj Ali, M. Thys, N. Beltaief et al., “A new locus for otosclerosis, OTSC8, maps to the pericentromeric region of chromosome 9,” Human Genetics, vol. 123, no. 3, pp. 267–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Chen, N. C. Meyer, M. J. Mckenna et al., “Single-nucleotide polymorphisms in the COL1A1 regulatory regions are associated with otosclerosis,” Clinical Genetics, vol. 71, no. 5, pp. 406–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Schrauwen, M. Thys, K. Vanderstraeten et al., “Association of bone morphogenetic proteins with otosclerosis,” Journal of Bone and Mineral Research, vol. 23, no. 4, pp. 507–516, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Thys, I. Schrauwen, K. Vanderstraeten et al., “The coding polymorphism T263I in TGF-β1 is associated with otosclerosis in two independent populations,” Human Molecular Genetics, vol. 16, no. 17, pp. 2021–2030, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Schrauwen, M. Ealy, M. J. Huentelman et al., “A Genome-wide analysis identifies genetic variants in the RELN gene associated with otosclerosis,” American Journal of Human Genetics, vol. 84, no. 3, pp. 328–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Csomor, I. Sziklai, and T. Karosi, “TNF-α receptor expression correlates with histologic activity of otosclerosis,” Otology and Neurotology, vol. 30, no. 8, pp. 1131–1137, 2009. View at Publisher · View at Google Scholar · View at Scopus