About this Journal Submit a Manuscript Table of Contents
ISRN Pathology
Volume 2013 (2013), Article ID 419542, 13 pages
http://dx.doi.org/10.1155/2013/419542
Review Article

Small Bowel Imaging: Clinical Applications of the Different Imaging Modalities—A Comprehensive Review

Radiology Department, First Faculty of Medicine, Università di Roma Sapienza, Viale del Policlinico 155, 00161 Rome, Italy

Received 14 January 2013; Accepted 6 February 2013

Academic Editors: F. Shimamoto and A. Wincewicz

Copyright © 2013 Gabriele Masselli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Nolan, “Enteroclysis of non-neoplastic disorders of the small intestine,” European Radiology, vol. 10, no. 2, pp. 342–353, 2000. View at Scopus
  2. J. R. Bessette, D. D. T. Maglinte, F. M. Kelvin, and S. M. Chernish, “Primary malignant tumors in the small bowel: 4 comparison of the small-bowel enema and conventional follow-through examination,” American Journal of Roentgenology, vol. 153, no. 4, pp. 741–744, 1989. View at Scopus
  3. A. Furukawa, M. Yamasaki, K. Furuichi et al., “Helical CT in the diagnosis of small bowel obstruction,” RadioGraphics, vol. 21, no. 2, pp. 341–355, 2001. View at Scopus
  4. R. Ruiz-Cruces, F. Ruiz, and M. Perez-Martinez, “Patient dose from barium procedures,” British Journal of Radiology, vol. 73, pp. 752–761, 2000.
  5. S. R. Paulsen, J. E. Huprich, J. G. Fletcher et al., “CT enterography as a diagnostic tool in evaluating small bowel disorders: review of clinical experience with over 700 cases,” RadioGraphics, vol. 26, no. 3, pp. 641–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. W. Walsh, G. N. Bender, and H. Timmons, “Comparison of computed tomography-enteroclysis and traditional computed tomography in the setting of suspected partial small bowel obstruction,” Emergency Radiology, vol. 5, no. 1, pp. 29–37, 1998. View at Scopus
  7. S. Schmidt, C. Felley, J. Y. Meuwly, P. Schnyder, and A. Denys, “CT enteroclysis: technique and clinical applications,” European Radiology, vol. 16, no. 3, pp. 648–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Hara, J. A. Leighton, V. K. Sharma, R. I. Heigh, and D. E. Fleischer, “Imaging of small bowel disease: comparison of capsule endoscopy, standard endoscopy, barium examination, and CT,” RadioGraphics, vol. 25, no. 3, pp. 697–711, 2005. View at Scopus
  9. A. C. Planner, A. Phillips, and H. K. Bungay, “The role of imaging in small bowel disease,” Imaging, vol. 18, no. 4, pp. 228–256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Macari, A. J. Megibow, and E. J. Balthazar, “A pattern approach to the abnormal small bowel: observations at MDCT and CT enterography,” American Journal of Roentgenology, vol. 188, no. 5, pp. 1344–1355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” The New England Journal of Medicine, vol. 357, pp. 2277–2284, 2007. View at Publisher · View at Google Scholar
  12. J. M. Froehlich, M. A. Patak, C. von Weymarn, C. F. Juli, C. L. Zollikofer, and K. U. Wentz, “Small bowel motility assessment with magnetic resonance imaging,” Journal of Magnetic Resonance Imaging, vol. 21, no. 4, pp. 370–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Siddiki and J. Fidler, “MR imaging of the small bowel in Crohn’s disease,” European Journal of Radiology, vol. 69, no. 3, pp. 409–417, 2008. View at Publisher · View at Google Scholar
  14. D. D. T. Maglinte and J. E. Huprich, “Invited commentary,” RadioGraphics, vol. 26, no. 3, pp. 657–662, 2006. View at Scopus
  15. J. L. Goldstein, G. M. Eisen, B. Lewis, I. M. Gralnek, S. Zlotnick, and J. G. Fort, “Video capsule endoscopy to prospectively assess small bowel injury with celecoxib, naproxen plus omeprazole, and placebo,” Clinical Gastroenterology and Hepatology, vol. 3, no. 2, pp. 133–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. D. T. Maglinte, “Capsule imaging and the role of radiology in the investigation of diseases of the small bowel,” Radiology, vol. 236, no. 3, pp. 763–767, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Fidler, L. Guimaraes, and D. M. Einstein, “MR imaging of the small bowel,” RadioGraphics, vol. 29, no. 6, pp. 1811–1825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. M. Wiarda, E. J. Kuipers, M. A. Heitbrink, A. van Oijen, and J. Stoker, “MR enteroclysis of inflammatory small-bowel diseases,” American Journal of Roentgenology, vol. 187, no. 2, pp. 522–531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. H. W. Umschaden, D. Szolar, J. Gasser, M. Umschaden, and H. Haselbach, “Small-bowel disease: comparison of MR enteroclysis images with conventional enteroclysis and surgical findings,” Radiology, vol. 215, no. 3, pp. 717–725, 2000. View at Scopus
  20. N. C. Gourtsoyiannis, J. Grammatikakis, G. Papamastorakis et al., “Imaging of small intestinal Crohn's disease: comparison between MR enteroclysis and conventional enteroclysis,” European Radiology, vol. 16, no. 9, pp. 1915–1925, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Prassopoulos, N. Papanikolaou, J. Grammatikakis, M. Rousomoustakaki, T. Maris, and N. Gourtsoyiannis, “MR enteroclysis imaging of crohn disease,” RadioGraphics, vol. 21, pp. S161–S172, 2001. View at Scopus
  22. D. D. T. Maglinte, E. S. Siegelman, and F. M. Kelvin, “MR enteroclysis: the future of small-bowel imaging?” Radiology, vol. 215, no. 3, pp. 639–641, 2000. View at Scopus
  23. A. Laghi, P. Paolantonio, F. Iafrate, F. Altomari, C. Miglio, and R. Passariello, “Oral contrast agents for magnetic resonance imaging of the bowel,” Topics in Magnetic Resonance Imaging, vol. 13, no. 6, pp. 389–396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Rieber, A. Aschoff, K. Nüssle et al., “MRI in the diagnosis of small bowel disease: use of positive and negative oral contrast media in combination with enteroclysis,” European Radiology, vol. 10, no. 9, pp. 1377–1382, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. W. C. Small, D. DeSimone-Macchi, J. R. Parker, et al., “A multisite phase III study of the safety and efficacy of a new manganese chloride-based gastrointestinal contrast agent for MRI of the abdomen and pelvis,” Journal of Magnetic Resonance Imaging, vol. 10, pp. 15–24, 1999. View at Publisher · View at Google Scholar
  26. D. Kivelitz, H. B. Gehl, A. Heuck et al., “Ferric ammonium citrate as a positive bowel contrast agent for MR imaging of the upper abdomen: safety and diagnostic efficacy,” Acta Radiologica, vol. 40, no. 4, pp. 429–435, 1999. View at Scopus
  27. A. H. Karantanas, N. Papanikolaou, J. Kalef-Ezra, A. Challa, and N. Gourtsoyiannis, “Blueberry juice used per os in upper abdominal MR imaging: composition and initial clinical data,” European Radiology, vol. 10, no. 6, pp. 909–913, 2000. View at Scopus
  28. A. Rieber, K. Nüssle, M. Reinshagen, H. J. Brambs, and A. Gabelmann, “MRI of the abdomen with positive oral contrast agents for the diagnosis of inflammatory small bowel disease,” Abdominal Imaging, vol. 27, no. 4, pp. 394–399, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. A. G. Schreyer, S. Gölder, K. Scheibl et al., “Dark lumen magnetic resonance enteroclysis in combination with MRI colonography for whole bowel assessment in patients with Crohn's disease: first clinical experience,” Inflammatory Bowel Diseases, vol. 11, no. 4, pp. 388–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Fidler, “MR imaging of the small bowel,” Radiologic Clinics of North America, vol. 45, no. 2, pp. 317–331, 2007. View at Publisher · View at Google Scholar
  31. R. R. Sood, I. Joubert, H. Franklin, T. Doyle, and D. J. Lomas, “Small bowel MRI: comparison of a polyethylene glycol preparation and water as oral contrast media,” Journal of Magnetic Resonance Imaging, vol. 15, no. 4, pp. 401–408, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Laghi, I. Carbone, C. Catalano et al., “Polyethylene glycol solution as an oral contrast agent for MR imaging of the small bowel,” American Journal of Roentgenology, vol. 177, no. 6, pp. 1333–1334, 2001. View at Scopus
  33. M. F. Lin and V. Narra, “Developing role of magnetic resonance imaging in Crohn's disease,” Current Opinion in Gastroenterology, vol. 24, no. 2, pp. 135–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Gore, G. Masselli, and D. Caroline, “Crohn’s disease of thesmall bowel,” in Textbook of Gastrointestinal Radiology, R. Gore and M. Levine, Eds., pp. 781–806, Saunders Elsevier, Philadelphia, Pa, USA, 3rd edition, 2008.
  35. H. W. Umschaden and J. Gasser, “MR enteroclysis,” Radiologic Clinics of North America, vol. 41, no. 2, pp. 231–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Tarjan, G. Toth, T. Gyorke, et al., “Ultrasound in Crohn’s disease of the small bowel,” European Journal of Radiology, vol. 35, no. 3, pp. 176–182, 2000. View at Publisher · View at Google Scholar
  37. R. Di Mizio, G. Maconi, S. Romano, F. D'Amario, G. B. Porro, and R. Grassi, “Small bowel Crohn disease: sonographic features,” Abdominal Imaging, vol. 29, no. 1, pp. 23–35, 2004. View at Scopus
  38. D. J. Lomas and M. J. Graves, “Small bowel MRI using water as a contrast medium,” British Journal of Radiology, vol. 72, pp. 994–997, 1999. View at Scopus
  39. W. Ajaj, M. Goyen, H. Schneemann et al., “Oral contrast agents for small bowel distension in MRI: influence of the osmolarity for small bowel distention,” European Radiology, vol. 15, no. 7, pp. 1400–1406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. D. A. McKenna, C. J. Roche, J. M. P. Murphy, and P. A. McCarthy, “Polyethylene glycol solution as an oral contrast agent for MRI of the small bowel in a patient population,” Clinical Radiology, vol. 61, no. 11, pp. 966–970, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Kuehle, W. Ajaj, S. C. Ladd, S. Massing, J. Barkhausen, and T. C. Lauenstein, “Hydro-MRI of the small bowel: effect of contrast volume, timing of contrast administration, and data acquisition on bowel distention,” American Journal of Roentgenology, vol. 187, no. 4, pp. W375–W385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. B. M. Young, J. G. Fletcher, F. Booya et al., “Head-to-head comparison of oral contrast agents for cross-sectional enterography: small bowel distention, timing, and side effects,” Journal of Computer Assisted Tomography, vol. 32, no. 1, pp. 32–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. N. C. Gourtsoyiannis and N. Papanikolaou, “Magnetic resonance enteroclysis,” Seminars in Ultrasound, CT and MRI, vol. 26, no. 4, pp. 237–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Masselli, E. Casciani, E. Polettini, S. Lanciotti, L. Bertini, and G. Gualdi, “Assessment of Crohn's disease in the small bowel: prospective comparison of magnetic resonance enteroclysis with conventional enteroclysis,” European Radiology, vol. 16, no. 12, pp. 2817–2827, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Zhu, J. R. Xu, H. X. Gong, and Y. Zhou, “Updating magnetic resonance imaging of small bowel: imaging protocols and clinical indications,” World Journal of Gastroenterology, vol. 14, no. 21, pp. 3403–3409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Negaard, V. Paulsen, L. Sandvik et al., “A prospective randomized comparison between two MRI studies of the small bowel in Crohn's disease, the oral contrast method and MR enteroclysis,” European Radiology, vol. 17, no. 9, pp. 2294–2301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. G. Schreyer, A. Geissler, H. Albrich et al., “Abdominal MRI after enteroclysis or with oral contrast in patients with suspected or proven Crohn's disease,” Clinical Gastroenterology and Hepatology, vol. 2, no. 6, pp. 491–497, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. C. G. Cronin, D. G. Lohan, A. M. Browne, C. Roche, and J. M. Murphy, “Magnetic resonance enterography in the evaluation of the small bowel,” Seminars in Roentgenology, vol. 44, no. 4, pp. 237–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Ajaj, S. C. Goehde, H. Schneemann, S. G. Ruehm, J. F. Debatin, and T. C. Lauenstein, “Dose optimization of mannitol solution for small bowel distension in MRI,” Journal of Magnetic Resonance Imaging, vol. 20, no. 4, pp. 648–653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Lohan, C. Cronin, C. Meehan, A. N. Alhajeri, C. Roche, and J. Murphy, “MR small bowel enterography: optimization of imaging timing,” Clinical Radiology, vol. 62, no. 8, pp. 804–807, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Masselli, E. Casciani, E. Polettini, and G. Gualdi, “Comparison of MR enteroclysis with MR enterography and conventional enteroclysis in patients with Crohn's disease,” European Radiology, vol. 18, no. 3, pp. 438–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. U. Korman, S. Kurugoglu, and G. Ogut, “Conventional enteroclysis with complementary MR enteroclysis: a combination of small bowel imaging,” Abdominal Imaging, vol. 30, no. 5, pp. 564–575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. D. J. M. Tolan, R. Greenhalgh, I. A. Zealley, S. Halligan, and S. A. Taylor, “MR enterographic manifestations of small bowel crohn disease,” RadioGraphics, vol. 30, no. 2, pp. 367–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Gourtsoyiannis, N. Papanikolaou, J. Grammatikakis, and P. Prassopoulos, “MR enteroclysis: technical considerations and clinical applications,” European Radiology, vol. 12, no. 11, pp. 2651–2658, 2002. View at Scopus
  55. C. G. Cronin, D. G. Lohan, J. Ni Mhuircheartaigh et al., “MRI small-bowel follow-through: prone versus supine patient positioning for best small-bowel distention and lesion detection,” American Journal of Roentgenology, vol. 191, no. 2, pp. 502–506, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. A. Patak, C. von Weymarn, and J. M. Froehlich, “Small bowel MR imaging: 1.5T versus 3T,” Magnetic Resonance Imaging Clinics of North America, vol. 15, no. 3, pp. 383–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. B. M. Wiarda, K. Horsthuis, A. C. Dobben et al., “Magnetic resonance imaging of the small bowel with the true FISP sequence: intra- and interobserver agreement of enteroclysis and imaging without contrast material,” Clinical Imaging, vol. 33, no. 4, pp. 267–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. R. Leyendecker, R. S. Bloomfeld, D. J. DiSantis, G. S. Waters, R. Mott, and R. E. Bechtold, “MR enterography in the management of patients with Crohn disease,” RadioGraphics, vol. 29, no. 6, pp. 1827–1846, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Oto, F. Zhu, K. Kulkarni, G. S. Karczmar, J. R. Turner, and D. Rubin, “Evaluation of diffusion-weighted MR imaging for detection of bowel inflammation in patients with Crohn's disease,” Academic Radiology, vol. 16, no. 5, pp. 597–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. T. C. Lauenstein, W. Ajaj, B. Narin et al., “MR imaging of apparent small-bowel perfusion for diagnosing mesenteric ischemia: feasibility study,” Radiology, vol. 234, no. 2, pp. 569–575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. R. N. Low, C. P. Sebrechts, D. A. Politoske et al., “Crohn disease with endoscopic correlation: single-shot fast spin-echo and gadolinium-enhanced fat-suppressed spoiled gradient-echo MR imaging,” Radiology, vol. 222, no. 3, pp. 652–660, 2002. View at Scopus
  62. A. Sharman, I. A. Zealley, R. Greenhalgh, P. Bassett, and S. A. Taylor, “MRI of small bowel Crohn's disease: determining the reproducibility of bowel wall gadolinium enhancement measurements,” European Radiology, vol. 19, no. 8, pp. 1960–1967, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Zappa, C. Stefanescu, D. Cazals-Hatem et al., “Which magnetic resonance imaging findings accurately evaluate inflammation in small bowel Crohn's disease? A retrospective comparison with surgical pathologic analysis,” Inflammatory Bowel Diseases, vol. 17, no. 4, pp. 984–993, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. S. A. Taylor, S. Punwani, M. Rodriguez-Justo et al., “Mural Crohn disease: correlation of dynamic contrast-enhanced MR imaging findings with angiogenesis and inflammation at histologic examination—pilot study,” Radiology, vol. 251, no. 2, pp. 369–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Masselli, E. Polettini, E. Casciani, L. Bertini, A. Vecchioli, and G. Gualdi, “Small-bowel neoplasms: prospective evaluation of MR enteroclysis,” Radiology, vol. 251, no. 3, pp. 743–750, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. S. J. B. van Weyenberg, M. R. Meijerink, M. A. J. M. Jacobs et al., “MR enteroclysis in the diagnosis of small-bowel neoplasms,” Radiology, vol. 254, no. 3, pp. 765–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. D. D. Maglinte, J. C. Lappas, and K. Sandrasegaran, “Malignant tumors of the small bowel,” in Textbook of Gastrointestinal Radiology, R. Gore and M. Levine, Eds., pp. 853–869, Saunders Elsevier, Philadelphia, Pa, USA, 3rd edition, 2008.
  68. G. Masselli, A. Picarelli, M. Di Tola et al., “Celiac disease: evaluation with dynamic contrast-enhanced MR imaging,” Radiology, vol. 256, no. 3, pp. 783–790, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. R. N. Low, S. C. Chen, and R. Barone, “Distinguishing benign from malignant bowel obstruction in patients with malignancy: findings at MR imaging,” Radiology, vol. 228, no. 1, pp. 157–165, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. M. S. Gee and M. G. Harisinghani, “MRI in patients with inflammatory bowel disease,” Journal of Magnetic Resonance Imaging, vol. 33, no. 3, pp. 527–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Maccioni, A. Bruni, A. Viscido et al., “MR imaging in patients with Crohn disease: value of T2- versus T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent,” Radiology, vol. 238, no. 2, pp. 517–530, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. G. Cronin, E. Delappe, D. G. Lohan, C. Roche, and J. M. Murphy, “Normal small bowel wall characteristics on MR enterography,” European Journal of Radiology, vol. 75, no. 2, pp. 207–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Sinha, R. Verma, S. Verma, and A. Rajesh, “MR enterography of Crohn disease: part 2, imaging and pathologic findings,” American Journal of Roentgenology, vol. 197, no. 1, pp. 80–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. D. D. T. Maglinte, N. Gourtsoyiannis, D. Rex, T. J. Howard, and F. M. Kelvin, “Classification of small bowel Crohn's subtypes based on multimodality imaging,” Radiologic Clinics of North America, vol. 41, no. 2, pp. 285–303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. J. G. Fletcher, J. L. Fidler, D. H. Bruining, and J. E. Huprich, “New concepts in intestinal imaging for inflammatory bowel diseases,” Gastroenterology, vol. 140, no. 6, pp. 1795–1806, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Horsthuis, S. Bipat, R. J. Bennink, and J. Stoker, “Inflammatory bowel disease diagnosed with US, MR, scintigraphy, and CT: meta-analysis of prospective studies,” Radiology, vol. 247, no. 1, pp. 64–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Negaard, L. Sandvik, A. Mulahasanovic, A. E. Berstad, and N. E. Klöw, “Magnetic resonance enteroclysis in the diagnosis of small-intestinal Crohn's disease: diagnostic accuracy and inter- and intra-observer agreement,” Acta Radiologica, vol. 47, no. 10, pp. 1008–1016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. J. M. Froehlich, C. Waldherr, C. Stoupis, S. M. Erturk, and M. A. Patak, “MR motility imaging in Crohn’s disease improves lesion detection compared with standard MR imaging,” European Radiology, vol. 20, no. 8, pp. 1945–1951, 2010. View at Publisher · View at Google Scholar
  79. D. H. Winship, R. W. Summers, and J. W. Singleton, “National cooperative Crohn's disease study: study design and conduct of the study,” Gastroenterology, vol. 77, no. 4, pp. 829–842, 1979. View at Scopus
  80. R. F. Harvey and J. M. Bradshaw, “A simple index of Crohn's-disease activity,” The Lancet, vol. 1, no. 8167, article 514, 1980. View at Scopus
  81. D. M. Koh, Y. Miao, R. J. Chinn, et al., “MR imaging evaluation of the activity of Crohn’s disease,” American Journal of Roentgenology, vol. 177, pp. 1325–1332, 2001. View at Publisher · View at Google Scholar
  82. J. Rimola, S. Rodriguez, O. García-Bosch et al., “Magnetic resonance for assessment of disease activity and severity in ileocolonic Crohn's disease,” Gut, vol. 58, no. 8, pp. 1113–1120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. R. del Vescovo, I. Sansoni, R. Caviglia et al., “Dynamic contrast enhanced magnetic resonance imaging of the terminal ileum: differentiation of activity of Crohn's disease,” Abdominal Imaging, vol. 33, no. 4, pp. 417–424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. A. J. Madureira, “The comb sign,” Radiology, vol. 230, no. 3, pp. 783–784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Masselli, “The gastrointestinal string sign,” Radiology, vol. 242, no. 2, pp. 632–633, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. L. E. Cipriano, B. G. Levesque, G. Zaric, E. Loftus, and W. Sandborn, “Cost-effectiveness of imaging strategies to reduce radiation-induced cancer risk in Crohn’s disease,” Inflammatory Bowel Disease, vol. 18, no. 7, pp. 1240–1248, 2012. View at Publisher · View at Google Scholar
  87. S. S. Lee, A. Y. Kim, S.-K. Yang et al., “Crohn disease of the small bowel: comparison of CT enterography, MR enterography, and small-bowel follow-through as diagnostic techniques,” Radiology, vol. 251, no. 3, pp. 751–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. H. A. Siddiki, J. L. Fidler, J. G. Fletcher et al., “Prospective comparison of state-of-the-art MR enterography and CT enterography in small-bowel Crohn's disease,” American Journal of Roentgenology, vol. 193, no. 1, pp. 113–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Schmidt, D. Lepori, J. Y. Meuwly et al., “Prospective comparison of MR enteroclysis with multidetector spiral-CT enteroclysis: interobserver agreement and sensitivity by means of “sign-by-sign” correlation,” European Radiology, vol. 13, no. 6, pp. 1303–1311, 2003. View at Scopus
  90. P. Soyer, M. Boudiaf, E. K. Fishman et al., “Imaging of malignant neoplasms of the mesenteric small bowel: new trends and perspectives,” Critical Reviews in Oncology / Hematology, vol. 80, no. 1, pp. 10–30, 2011. View at Publisher · View at Google Scholar
  91. R. Caspari, M. von Falkenhausen, C. Krautmacher, H. Schild, J. Heller, and T. Sauerbruch, “Comparison of capsule endoscopy and magnetic resonance imaging for the detection of polyps of the small intestine in patients with familial adenomatous polyposis or with Peutz-Jeghers' syndrome,” Endoscopy, vol. 36, no. 12, pp. 1054–1059, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. J. G. Albert, F. Martiny, A. Krummenerl et al., “Diagnosis of small bowel Crohn's disease: a prospective comparison of capsule endoscopy with magnetic resonance imaging and fluoroscopic enteroclysis,” Gut, vol. 54, no. 12, pp. 1721–1727, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. R. C. Semelka, G. John, N. L. Kelekis, D. A. Burdeny, and S. M. Ascher, “Small bowel neoplastic disease: demonstration by MRI,” Journal of Magnetic Resonance Imaging, vol. 6, no. 6, pp. 855–860, 1996. View at Scopus
  94. A. Postgate, E. Despott, D. Burling et al., “Significant small-bowel lesions detected by alternative diagnostic modalities after negative capsule endoscopy,” Gastrointestinal Endoscopy, vol. 68, no. 6, pp. 1209–1214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. M. Baichi, R. M. Arifuddin, and P. S. Mantry, “Small-bowel masses found and missed on capsule endoscopy for obscure bleeding,” Scandinavian Journal of Gastroenterology, vol. 42, no. 9, pp. 1127–1132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Pennazio, E. Rondonotti, and R. de Franchis, “Capsule endoscopy in neoplastic diseases,” World Journal of Gastroenterology, vol. 14, no. 34, pp. 5245–5253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Estévez, B. González-Conde, J. L. Vázquez-Iglesias, P. A. Alonso, M. D. L. A. Vázquez-Millán, and R. Pardeiro, “Incidence of tumoral pathology according to study using capsule endoscopy for patients with obscure gastrointestinal bleeding,” Surgical Endoscopy and Other Interventional Techniques, vol. 21, no. 10, pp. 1776–1780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. S. J. B. van Weyenberg, M. R. Meijerink, M. A. J. M. Jacobs, C. van Kuijk, C. J. Mulder, and J. H. T. M. van Waesberghe, “MR enteroclysis in refractory celiac disease: proposal and validation of a severity scoring system,” Radiology, vol. 259, no. 1, pp. 151–161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. P. H. R. Green and C. Cellier, “Medical progress: celiac disease,” New England Journal of Medicine, vol. 357, no. 17, pp. 1731–1743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. E. Tomei, R. C. Semelka, L. Braga et al., “Adult celiac disease: what is the role of MRI?” Journal of Magnetic Resonance Imaging, vol. 24, no. 3, pp. 625–629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. D. G. Lohan, A. N. Alhajeri, C. G. Cronin, C. J. Roche, and J. M. Murphy, “MR enterography of small-bowel lymphoma: potential for suggestion of histologic subtype and the presence of underlying celiac disease,” American Journal of Roentgenology, vol. 190, no. 2, pp. 287–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. S. J. B. van Weyenberg, J. H. T. M. van Waesberghe, C. Ell, and J. Pohl, “Enteroscopy and its relationship to radiological small bowel imaging,” Gastrointestinal Endoscopy Clinics of North America, vol. 19, no. 3, pp. 389–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. D. P. Beall, B. J. Fortman, B. C. Lawler, and F. Regan, “Imaging bowel obstruction: a comparison between fast magnetic resonance imaging and helical computed tomography,” Clinical Radiology, vol. 57, no. 8, pp. 719–724, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Lienemann, D. Sprenger, H. O. Steitz, M. Korell, and M. Reiser, “Detection and mapping of intraabdominal adhesions by using functional cine MR imaging: preliminary results,” Radiology, vol. 217, no. 2, pp. 421–425, 2000. View at Scopus
  105. G. Masselli and G. Gualdi, “MR imaging of the small bowel,” Radiology, vol. 264, no. 2, pp. 333–348, 2012. View at Publisher · View at Google Scholar
  106. G. Masselli and G. Gualdi, “CT and MR enterography in evaluating small bowel diseases: when to use which modality?” Abdominal Imaging, vol. 38, no. 2, pp. 249–259, 2013.