About this Journal Submit a Manuscript Table of Contents
ISRN Pharmaceutics
Volume 2012 (2012), Article ID 216068, 5 pages
http://dx.doi.org/10.5402/2012/216068
Research Article

Application of Sephadex LH-20 for Microdetermination of Dopamine by Solid Phase Spectrophotometry

Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran

Received 23 October 2012; Accepted 7 November 2012

Academic Editors: J. Lee, L. Pezza, and C. Zacharis

Copyright © 2012 Mehdi Taghdiri and Arash Mohamadipour-taziyan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Yang, J. Li, and L. Zhang, “HPLC determination of dopamine hydrochloride in dopamine hydrochloride and sodium chloride injection,” Chinese Journal of Pharmaceutical Analysis, vol. 23, pp. 232–232, 2003.
  2. S. M. Wabaidur, Z. A. Alothman, S. M. Alam, and S. H. Lee, “Flow injection-chemiluminescence determination of dopamine using potassium permanganate and formaldehyde system,” Spectrochimica Acta, vol. 96, pp. 221–225, 2012.
  3. M. Grünhut, V. L. Martins, M. E. Centurión, M. C. U. Araújo, and B. S. F. Band, “Flow-batch analyzer for the chemiluminescence determination of catecholamines in pharmaceutical preparations,” Analytical Letters, vol. 44, no. 1–3, pp. 67–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. R. Zare, N. Rajabzadeh, N. Nasirizadeh, and M. Mazloum Ardakani, “Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid,” Journal of Electroanalytical Chemistry, vol. 589, no. 1, pp. 60–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. R. Zare, N. Nasirizadeh, and M. Mazloum Ardakani, “Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid,” Journal of Electroanalytical Chemistry, vol. 577, no. 1, pp. 25–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Yao, Y. Sun, X. Lin, Y. Tang, and L. Huang, “Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid,” Electrochimica Acta, vol. 52, no. 20, pp. 6165–6171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Wang, J. Liu, Q. Liang, Y. Wang, and G. Luo, “Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid,” Analyst, vol. 127, no. 5, pp. 653–658, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. H. Wang, Q. L. Liang, Y. M. Wang, and G. A. Luo, “Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid,” Journal of Electroanalytical Chemistry, vol. 540, pp. 129–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Wang, R. Yuan, Y. Chai, S. Chen, F. Hu, and M. Zhang, “Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode,” Analytica Chimica Acta, vol. 741, pp. 15–20, 2012.
  10. S. Thiagarajan and S. M. Chen, “Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid,” Talanta, vol. 74, no. 2, pp. 212–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. P. Keeley, N. McEvoy, H. Nolan et al., “Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films,” Analytical Methods, vol. 4, pp. 2048–2053, 2012.
  12. Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, “Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid,” Biosensors and Bioelectronics, vol. 34, pp. 125–131, 2012.
  13. A. A. Elbashir, A. A. Ahmed, S. M. A. Ahmed, and H. Y. Aboul-Enein, “1, 2-Naphthoquinone-4-sulphonic acid sodium salt (NQS) as an analytical reagent for the determination of pharmaceutical amine by spectrophotometry,” Applied Spectroscopy Reviews, vol. 47, pp. 219–232, 2012.
  14. Q. Li, J. Li, and Z. Yang, “Study of the sensitization of tetradecyl benzyl dimethyl ammonium chloride for spectrophotometric determination of dopamine hydrochloride using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent,” Analytica Chimica Acta, vol. 583, no. 1, pp. 147–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Nagaraja, K. C. S. Murthy, K. S. Rangappa, and N. M. M. Gowda, “Spectrophotometric methods for the determination of certain catecholamine derivatives in pharmaceutical preparations,” Talanta, vol. 46, no. 1, pp. 39–44, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Nagaraja, R. A. Vasantha, and K. R. Sunitha, “A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 25, no. 3-4, pp. 417–424, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Nagaraja, R. A. Vasantha, and K. R. Sunitha, “A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations,” Talanta, vol. 55, no. 6, pp. 1039–1046, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. R. Hormozi Nezhad, J. Tashkhourian, and J. Khodaveisi, “Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles,” Journal of the Iranian Chemical Society, vol. 7, no. 1, pp. S83–S91, 2010. View at Scopus
  19. L. Guo, Y. Zhang, and Q. Li, “Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III),” Analytical Sciences, vol. 25, no. 12, pp. 1451–1455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. El-Kommos, “Spectrophotometric assay of dopamine hydrochloride injection using thiosemicarbazide,” Journal de Pharmacie de Belgique, vol. 42, no. 6, pp. 371–376, 1987. View at Scopus
  21. S. Matsuoka and K. Yoshimura, “Recent trends in solid phase spectrometry: 2003–2009. A Review,” Analytica Chimica Acta, vol. 664, no. 1, pp. 1–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Silva and E. E. S. Schapoval, “Spectrophotometric determination of etidocaine in pharmaceutical (dental) formulation,” Journal of Pharmaceutical and Biomedical Analysis, vol. 29, no. 4, pp. 749–754, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Safavi, N. Maleki, O. Moradlou, and F. Tajabadi, “Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode,” Analytical Biochemistry, vol. 359, no. 2, pp. 224–229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Selvaraju and R. Ramaraj, “Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode,” Electrochemistry Communications, vol. 5, no. 8, pp. 667–672, 2003. View at Publisher · View at Google Scholar · View at Scopus