About this Journal Submit a Manuscript Table of Contents
ISRN Pharmaceutics
Volume 2012 (2012), Article ID 738432, 11 pages
http://dx.doi.org/10.5402/2012/738432
Review Article

Optimizing Druggability through Liposomal Formulations: New Approaches to an Old Concept

UMR 911 CRO2, Pharmacokinetics Laboratory, Aix-Marseille University, 13385 Marseille, France

Received 12 September 2011; Accepted 20 October 2011

Academic Editors: A. Bolognese, A. I. Segall, and J. Torrado

Copyright © 2012 Dimitrios Bitounis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Kshirsagar, S. K. Pandya, B. G. Kirodian, and S. Sanath, “Liposomal drug delivery system from laboratory to clinic,” Journal of Postgraduate Medicine, vol. 51, no. 5, pp. S5–S15, 2005. View at Scopus
  2. A. D. Bangham, M. W. Hill, and N. G. A. Miller, “Methods in membrane biology,” Journal of Bioenergetics and Biomembranes, vol. 7, pp. 87–88, 1975.
  3. R. Fanciullino and J. Ciccolini, “Liposome-encapsulated anticancer drugs: still waiting for the magic bullet?” Current Medicinal Chemistry, vol. 16, no. 33, pp. 4361–4373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. L. Immordino, F. Dosio, and L. Cattel, “Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential,” International journal of nanomedicine, vol. 1, no. 3, pp. 297–315, 2006. View at Scopus
  5. B. Dupont, “Overview of the lipid formulations of amphotericin B,” Journal of Antimicrobial Chemotherapy, vol. 49, no. 1, pp. 31–36, 2002. View at Scopus
  6. L. E. Euliss, J. A. DuPont, S. Gratton, and J. DeSimone, “Imparting size, shape, and composition control of materials for nanomedicine,” Chemical Society Reviews, vol. 35, no. 11, pp. 1095–1104, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. D. Papahadjopoulos and H. K. Kimelberg, “Phospholipid vesicles (liposomes) as models for biological membranes: their properties and interactions with cholesterol and proteins,” Progress in Surface Science, vol. 4, no. C, pp. 141–IN9, 1974. View at Scopus
  8. J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, W. H. Freeman and Company, 5th edition, 2002.
  9. H. C. Berg, Random Walks in Biology, Princeton University Press, Princeton, NJ, USA, 1993.
  10. M. A. Rodriguez, R. Pytlik, T. Kozak et al., “Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study,” Cancer, vol. 115, no. 15, pp. 3475–3482, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. T. Shimanouchi, M. Sasaki, A. Hiroiwa et al., “Relationship between the mobility of phosphocholine headgroups of liposomes and the hydrophobicity at the membrane interface: a characterization with spectrophotometric measurements,” Colloids and Surfaces B, vol. 88, no. 1, pp. 221–230, 2011. View at Publisher · View at Google Scholar · View at PubMed
  12. T. Starke-Peterkovic and R. J. Clarke, “Effect of headgroup on the dipole potential of phospholipid vesicles,” European Biophysics Journal, vol. 39, no. 1, pp. 103–110, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. J. Copland, T. Rades, N. M. Davies, and M. A. Baird, “Lipid based particulate formulations for the delivery of antigen,” Immunology and Cell Biology, vol. 83, no. 2, pp. 97–105, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. C. Taira, N. S. Chiaramoni, K. M. Pecuch, and S. Alonso-Romanowski, “Stability of liposomal formulations in physiological conditions for oral drug delivery,” Drug Delivery, vol. 11, no. 2, pp. 123–128, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. V. Guida, “Thermodynamics and kinetics of vesicles formation processes,” Advances in Colloid and Interface Science, vol. 161, no. 1-2, pp. 77–88, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. E. Schechter, Biochimie et Biophysique des Membranes: Aspects Structuraux et Fonctionnels, Dunod, 2002.
  17. P. Milla, F. Dosio, and L. Cattel, “PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery,” Current Drug Metabolism. In press.
  18. S. C. Semple, R. Leone, J. Wang et al., “Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity,” Journal of Pharmaceutical Sciences, vol. 94, no. 5, pp. 1024–1038, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. A. Nagayasu, K. Uchiyama, and H. Kiwada, “The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs,” Advanced Drug Delivery Reviews, vol. 40, no. 1-2, pp. 75–87, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Ostrosky-Zeichner, K. A. Marr, J. H. Rex, and S. H. Cohen, “Amphotericin B: time for a new "gold standard",” Clinical Infectious Diseases, vol. 37, no. 3, pp. 415–425, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. Gabizon, H. Shmeeda, and Y. Barenholz, “Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies,” Clinical Pharmacokinetics, vol. 42, no. 5, pp. 419–436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. T. Kawaguchi, Y. Kametani, S. Kato, H. Furuya, K. Tamaoki, and S. Habu, “Effects of liposome-encapsulated hemoglobin on human immune system: evaluation in immunodeficient mice reconstituted with human cord blood stem cells,” Artificial Organs, vol. 33, no. 2, pp. 169–176, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. W. C. Zamboni, “Concept and clinical evaluation of carrier-mediated anticancer agents,” Oncologist, vol. 13, no. 3, pp. 248–260, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. D. Papahadjopoulos, T. M. Allen, A. Gabizon et al., “Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 24, pp. 11460–11464, 1991. View at Scopus
  25. T. Ta, A. J. Convertine, C. R. Reyes, P. S. Stayton, and T. M. Porter, “Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co- propylacrylic acid) copolymers for triggered release of doxorubicin,” Biomacromolecules, vol. 11, no. 8, pp. 1915–1920, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. Schnyder and J. Huwyler, “Drug transport to brain with targeted liposomes,” NeuroRx, vol. 2, no. 1, pp. 99–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. C. Semple, T. O. Harasym, K. A. Clow, S. M. Ansell, S. K. Klimuk, and M. J. Hope, “Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic acid,” Journal of Pharmacology and Experimental Therapeutics, vol. 312, no. 3, pp. 1020–1026, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. T. Ishida, H. Harashima, and H. Kiwada, “Liposome clearance,” Bioscience Reports, vol. 22, no. 2, pp. 197–224, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. W. C. Zamboni, “Liposomal, nanoparticle, and conjugated formulations of anticancer agents,” Clinical Cancer Research, vol. 11, no. 23, pp. 8230–8234, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. Huwyler, J. Drewe, and S. Krähenbühl, “Tumor targeting using liposomal antineoplastic drugs,” International Journal of Nanomedicine, vol. 3, no. 1, pp. 21–29, 2008. View at Scopus
  31. R. Fanciullino, S. Giacometti, C. Aubert et al., “Development of stealth liposome formulation of 2′-deoxyinosine as 5-fluorouracil modulator: in vitro and in vivo study,” Pharmaceutical Research, vol. 22, no. 12, pp. 2051–2057, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nature Reviews Drug Discovery, vol. 4, no. 2, pp. 145–160, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. A. M. Minisini, C. Andreetta, G. Fasola, and F. Puglisi, “Pegylated liposomal doxorubicin in elderly patients with metastatic breast cancer,” Expert Review of Anticancer Therapy, vol. 8, no. 3, pp. 331–342, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. A. A. Gabizon, H. Shmeeda, and S. Zalipsky, “Pros and cons of the liposome platform in cancer drug targeting,” Journal of Liposome Research, vol. 16, no. 3, pp. 175–183, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. C. Woodle, K. K. Matthay, M. S. Newman et al., “Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes,” Biochimica et Biophysica Acta, vol. 1105, no. 2, pp. 193–200, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. R. D. Hofheinz, S. U. Gnad-Vogt, U. Beyer, and A. Hochhaus, “Liposomal encapsulated anti-cancer drugs,” Anti-Cancer Drugs, vol. 16, no. 7, pp. 691–707, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. L. E. Van Vlerken, T. K. Vyas, and M. M. Amiji, “Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery,” Pharmaceutical Research, vol. 24, no. 8, pp. 1405–1414, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. E. Wagner, “Programmed drug delivery: nanosystems for tumor targeting,” Expert Opinion on Biological Therapy, vol. 7, no. 5, pp. 587–593, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. N. Oku and Y. Namba, “Glucuronate-modified, long-circulating liposomes for the delivery of anticancer agents,” Methods in Enzymology, vol. 391, pp. 145–162, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. W. C. Zamboni, S. Strychor, L. Maruca et al., “Pharmacokinetic study of pegylated liposomal CKD-602 (S-CKD602) in patients with advanced malignancies,” Clinical Pharmacology and Therapeutics, vol. 86, no. 5, pp. 519–526, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. A. Pathak, S. P. Vyas, and K. C. Gupta, “Nano-vectors for efficient liver specific gene transfer,” International Journal of Nanomedicine, vol. 3, no. 1, pp. 31–49, 2008. View at Scopus
  42. D. K. Chang, C. Y. Chiu, S. Y. Kuo et al., “Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors,” Journal of Biological Chemistry, vol. 284, no. 19, pp. 12905–12916, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. T. Asai and N. Oku, “Angiogenic vessel-targeting DDS by liposomalized oligopeptides,” Methods in Molecular Biology, vol. 605, pp. 335–347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Gabizon, D. Tzemach, J. Gorin et al., “Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models,” Cancer Chemotherapy and Pharmacology, vol. 66, no. 1, pp. 43–52, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. A. Garg, A. W. Tisdale, E. Haidari, and E. Kokkoli, “Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide,” International Journal of Pharmaceutics, vol. 366, no. 1-2, pp. 201–210, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. K. Imai and A. Takaoka, “Comparing antibody and small-molecule therapies for cancer,” Nature Reviews Cancer, vol. 6, no. 9, pp. 714–727, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. B. Romberg, W. E. Hennink, and G. Storm, “Sheddable coatings for long-circulating nanoparticles,” Pharmaceutical Research, vol. 25, no. 1, pp. 55–71, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. D. H. Yu, Q. Lu, J. Xie, C. Fang, and H. Z. Chen, “Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature,” Biomaterials, vol. 31, no. 8, pp. 2278–2292, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. P. K. Jayanna, V. P. Torchilin, and V. A. Petrenko, “Liposomes targeted by fusion phage proteins,” Nanomedicine, vol. 5, no. 1, pp. 83–89, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. G. S. Shukla and D. N. Krag, “Selective delivery of therapeutic agents for the diagnosis and treatment of cancer,” Expert Opinion on Biological Therapy, vol. 6, no. 1, pp. 39–54, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. S. Song, D. Liu, J. Peng et al., “Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo,” The FASEB Journal, vol. 23, no. 5, pp. 1396–1404, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. W. Li, N. Geis, and M. Kirschfink, “Specific targeting of anti-CD59 siRNA by Herceptin-conjugated liposomes improves complement-mediated cytotoxicity of breast carcinoma cells,” Molecular Immunology, vol. 46, no. 14, pp. 2830–2831, 2009.
  53. M. Heger, I. I. Salles, A. I. P. M. de Kroon, and H. Deckmyn, “Platelets and PEGylated lecithin liposomes: when stealth is allegedly picked up on the radar (and eaten),” Microvascular Research, vol. 78, no. 1, pp. 1–3, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. T. Ishida, M. Harada, Y. W. Xin, M. Ichihara, K. Irimura, and H. Kiwada, “Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes,” Journal of Controlled Release, vol. 105, no. 3, pp. 305–317, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. A. Judge, K. McClintock, J. R. Phelps, and I. MacLachlan, “Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes,” Molecular Therapy, vol. 13, no. 2, pp. 328–337, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. T. Maeda and K. Fujimoto, “A reduction-triggered delivery by a liposomal carrier possessing membrane-permeable ligands and a detachable coating,” Colloids and Surfaces B, vol. 49, no. 1, pp. 15–21, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. M. Prato, K. Kostarelos, and A. Bianco, “Functionalized carbon nanotubes in drug design and discovery,” Accounts of Chemical Research, vol. 41, no. 1, pp. 60–68, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus