About this Journal Submit a Manuscript Table of Contents
ISRN Pharmacology
Volume 2013 (2013), Article ID 641089, 17 pages
http://dx.doi.org/10.1155/2013/641089
Review Article

Scientific Challenges and Implementation Barriers to Translation of Pharmacogenomics in Clinical Practice

Department of Pharmacology, School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA

Received 14 January 2013; Accepted 4 February 2013

Academic Editors: H. Cerecetto, R. Fantozzi, G. Gervasini, T. Irie, F. J. Miranda, and R. Villalobos-Molina

Copyright © 2013 Y. W. Francis Lam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. E. Evans and M. V. Relling, “Pharmacogenomics: translating functional genomics into rational therapeutics,” Science, vol. 286, no. 5439, pp. 487–491, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. E. S. Vesell, “New directions in pharmacogenetics: introduction,” Federation Proceedings, vol. 43, no. 8, pp. 2319–2325, 1984. View at Scopus
  3. K. R. Crews, S. J. Cross, J. N. Mccormick et al., “Development and implementation of a pharmacist-managed clinical pharmacogenetics service,” American Journal of Health-System Pharmacy, vol. 68, no. 2, pp. 143–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. R. Nelson, M. Conlon, C. Baralt, J. A. Johnson, M. J. Clare-Salzler, and M. Rawley-Payne, “University of florida clinical and translational science institute: transformation and translation in personalized medicine,” Clinical and Translational Science, vol. 4, no. 6, pp. 400–402, 2011. View at Publisher · View at Google Scholar
  5. J. M. Pulley, J. C. Denny, J. F. Peterson et al., “Operational implementation of prospective genotyping for personalized medicine: the design of the vanderbilt PREDICT project,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 87–95, 2012. View at Publisher · View at Google Scholar
  6. P. H. O'Donnell, A. Bush, J. Spitz et al., “The 1200 patients project: creating a new medical model system for clinical implementation of pharmacogenomics,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 446–449, 2012. View at Publisher · View at Google Scholar
  7. L. Cavallari and E. A. Nutescu, “A team approach to warfarin pharmacogenetics,” in Pharmacy Practice Nerws, 2012.
  8. Y. W. F. Lam, “Translating pharmacogenomic research to therapeutic potentials,” in Pharmacogenomics: Challenges and Opportunities in Therapeutic Implementation, Y. W. F. Lam and L. H. Cavallari, Eds., Elsevier, 2013.
  9. I. Zineh, G. D. Pebanco, C. L. Aquilante et al., “Discordance between availability of pharmacogenetics studies and pharmacogenetics-based prescribing information for the top 200 drugs,” The Annals of Pharmacotherapy, vol. 40, no. 4, pp. 639–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. K. Malhotra, D. Goldman, R. W. Buchanan et al., “The dopamine D3 receptor (DRD3) Ser9Gly polymorphism and schizophrenia: a haplotype relative risk study and association with clozapine response,” Molecular Psychiatry, vol. 3, no. 1, pp. 72–75, 1998. View at Scopus
  11. A. K. Malhotra, D. Goldman, C. Mazzanti, A. Clifton, A. Breier, and D. Pickar, “A functional serotonin transporter (5-HTT) polymorphism is associated with psychosis in neuroleptic-free schizophrenics,” Molecular Psychiatry, vol. 3, no. 4, pp. 328–332, 1998. View at Scopus
  12. A. K. Malhotra, D. Goldman, N. Ozaki, A. Breier, R. Buchanan, and D. Pickar, “Lack of association between polymorphisms in the 5-HT(2A) receptor gene and the antipsychotic response to clozapine,” The American Journal of Psychiatry, vol. 153, no. 8, pp. 1092–1094, 1996. View at Scopus
  13. M. Masellis, V. Basile, H. Y. Meltzer et al., “Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients,” Neuropsychopharmacology, vol. 19, no. 2, pp. 123–132, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Arranz, J. Munro, J. Birkett et al., “Pharmacogenetic prediction of clozapine response,” The Lancet, vol. 355, no. 9215, pp. 1615–1616, 2000. View at Scopus
  15. S. T. Lee, S. Ryu, S. R. Kim et al., “Association study of 27 annotated genes for clozapine pharmacogenetics: validation of preexisting studies and identification of a new candidate gene, ABCB1, for treatment response,” Journal of Clinical Psychopharmacology, vol. 32, no. 4, pp. 441–448, 2012. View at Publisher · View at Google Scholar
  16. J. Schumacher, T. G. Schulze, T. F. Wienker, M. Rietschel, and M. M. Nothen, “Pharmacogenetics of clozapine response,” The Lancet, vol. 356, no. 9228, pp. 506–507, 2000. View at Scopus
  17. A. R. Shuldiner, J. R. O'Connell, K. P. Bliden et al., “Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy,” Journal of the American Medical Association, vol. 302, no. 8, pp. 849–858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Link, S. Parish, J. Armitage et al., “SLCO1B1 variants and statin-induced myopathy—a genomewide study,” The New England Journal of Medicine, vol. 359, no. 8, pp. 789–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. M. Cooper, J. A. Johnson, T. Y. Langaee et al., “A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose,” Blood, vol. 112, no. 4, pp. 1022–1027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. C. Cha, T. Mushiroda, A. Takahashi et al., “Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese,” Human Molecular Genetics, vol. 19, no. 23, pp. 4735–4744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Takeuchi, R. McGinnis, S. Bourgeois et al., “A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose,” PLoS Genetics, vol. 5, no. 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. K. Daly, P. T. Donaldson, P. Bhatnagar et al., “HLA-B5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin,” Nature Genetics, vol. 41, no. 7, pp. 816–819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Åberg, D. E. Adkins, J. Bukszár et al., “Genomewide association study of movement-related adverse antipsychotic effects,” Biological Psychiatry, vol. 67, no. 3, pp. 279–282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. E. Adkins, K. Åberg, J. L. McClay et al., “Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs,” Molecular Psychiatry, vol. 16, no. 3, pp. 321–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. D. E. Adkins, K. Berg, J. L. McClay et al., “A genomewide association study of citalopram response in major depressive disorder-a psychometric approach,” Biological Psychiatry, vol. 68, no. 6, pp. e25–e27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Alkelai, L. Greenbaum, A. Rigbi, K. Kanyas, and B. Lerer, “Genome-wide association study of antipsychotic-induced parkinsonism severity among schizophrenia patients,” Psychopharmacology, vol. 206, no. 3, pp. 491–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Lavedan, L. Licamele, S. Volpi et al., “Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study,” Molecular Psychiatry, vol. 14, no. 8, pp. 804–819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. L. McClay, D. E. Adkins, K. Åberg et al., “Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics,” Molecular Psychiatry, vol. 16, no. 1, pp. 76–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Volpi, C. Heaton, K. MacK et al., “Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia,” Molecular Psychiatry, vol. 14, no. 11, pp. 1024–1031, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Volpi, S. G. Potkin, A. K. Malhotra, L. Licamele, and C. Lavedan, “Applicability of a genetic signature for enhanced iloperidone efficacy in the treatment of schizophrenia,” Journal of Clinical Psychiatry, vol. 70, no. 6, pp. 801–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. W. Belmont, P. Hardenbol, T. D. Willis et al., “The international HapMap project,” Nature, vol. 426, no. 6968, pp. 789–796, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. I. Lucena, M. Molokhia, Y. Shen et al., “Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles,” Gastroenterology, vol. 141, no. 1, pp. 338–347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. K. A. Jablonski, J. B. McAteer, P. I. W. De Bakker et al., “Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program,” Diabetes, vol. 59, no. 10, pp. 2672–2681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Lubomirov, J. D. Lulio, A. Fayet et al., “ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformuiated with ritonavir,” Pharmacogenetics and Genomics, vol. 20, no. 4, pp. 217–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Suarez-Kurtz, D. D. Vargens, V. A. Sortica, and M. H. Hutz, “Accuracy of NAT2 SNP genotyping panels to infer acetylator phenotypes in African, Asian, Amerindian and admixed populations,” Pharmacogenomics, vol. 13, no. 8, pp. 851–854, 2012.
  36. G. Suarez-Kurtz, S. D. Pena, and M. H. Hutz, “Application of the FST statistics to explore pharmacogenomic diversity in the Brazilian population,” Pharmacogenomics, vol. 13, no. 7, pp. 771–777, 2012. View at Publisher · View at Google Scholar
  37. B. F. Gage, C. Eby, J. A. Johnson et al., “Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin,” Clinical Pharmacology and Therapeutics, vol. 84, no. 3, pp. 326–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. P. Owen, R. B. Altman, and T. E. Klein, “PharmGKB and the international warfarin pharmacogenetics consortium: the changing role for pharmacogenomic databases and single-drug pharmacogenetics,” Human Mutation, vol. 29, no. 4, pp. 456–460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. T. E. Klein, R. B. Altman, N. Eriksson et al., “Estimation of the warfarin dose with clinical and pharmacogenetic data,” The New England Journal of Medicine, vol. 360, pp. 753–764, 2009. View at Publisher · View at Google Scholar
  40. J. Shin and D. Cao, “Comparison of warfarin pharmacogenetic dosing algorithms in a racially diverse large cohort,” Pharmacogenomics, vol. 12, no. 1, pp. 125–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. McCormack, A. Alfirevic, S. Bourgeois et al., “HLA-A3101 and carbamazepine-induced hypersensitivity reactions in Europeans,” The New England Journal of Medicine, vol. 364, pp. 1134–1143, 2011. View at Publisher · View at Google Scholar
  42. P. Chen, J. J. Lin, C. S. Lu et al., “Carbamazepine-induced toxic effects and HLA-B1502 screening in Taiwan,” The New England Journal of Medicine, vol. 364, no. 12, pp. 1126–1133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. V. L. Yip, A. G. Marson, A. L. Jorgensen, M. Pirmohamed, and A. Alfirevic, “HLA genotype and carbamazepine-induced cutaneous adverse drug reactions: a systematic review,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 757–765, 2012. View at Publisher · View at Google Scholar
  44. C. L. Alfaro, Y. W. F. Lam, J. Simpson, and L. Ereshefsky, “CYP2D6 status of extensive metabolizers after multiple-dose fluoxetine, fluvoxamine, paroxetine, or sertraline,” Journal of Clinical Psychopharmacology, vol. 19, no. 2, pp. 155–163, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. C. L. Alfaro, Y. W. F. Lam, J. Simpson, and L. Ereshefsky, “CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations,” Journal of Clinical Pharmacology, vol. 40, no. 1, pp. 58–66, 2000. View at Scopus
  46. G. R. Robertson, C. Liddle, and S. J. Clarke, “Inflammation and altered drug clearance in cancer: transcriptional repression of a human CYP3A4 transgene in tumor-bearing mice,” Clinical Pharmacology and Therapeutics, vol. 83, no. 6, pp. 894–897, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. K. A. Espnes, K. O. Heimdal, and O. Spigset, “A puzzling case of increased serum clozapine levels in a patient with inflammation and infection,” Therapeutic Drug Monitoring, vol. 34, no. 5, pp. 489–492, 2012. View at Publisher · View at Google Scholar
  48. F. Stegmeier, M. Warmuth, W. R. Sellers, and M. Dorsch, “Targeted cancer therapies in the twenty-first century: lessons from imatinib,” Clinical Pharmacology and Therapeutics, vol. 87, no. 5, pp. 543–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Gomez and M. Ingelman-Sundberg, “Pharmacoepigenetics: its role in interindividual differences in drug response,” Clinical Pharmacology and Therapeutics, vol. 85, no. 4, pp. 426–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Baer-Dubowska, A. Majchrzak-Celińska, and M. Cichocki, “Pharmocoepigenetics: a new approach to predicting individual drug responses and targeting new drugs,” Pharmacological Reports, vol. 63, no. 2, pp. 293–304, 2011. View at Scopus
  51. V. Perera, A. S. Gross, and A. J. McLachlan, “Influence of environmental and genetic factors on CYP1A2 activity in individuals of South Asian and European ancestry,” Clinical Pharmacology and Therapeutics, vol. 92, no. 4, pp. 511–519, 2012.
  52. M. Kacevska, M. Ivanov, and M. Ingelman-Sundberg, “Epigenomics and interindividual differences in drug response,” Clinical Pharmacology and Therapeutics, vol. 92, no. 6, pp. 727–736, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. Centers for Disease Control and Prevention, Genetic testing: ACCE model system for collecting, analyzing and disseminating information on genetic tests ,2010.
  54. A. O. Berg, M. Piper, K. Armstrong et al., “Recommendations from the EGAPP working group: testing for cytochrome P450 polymorphisms in adults with nonpsychotic depression treated with selective serotonin reuptake inhibitors,” Genetics in Medicine, vol. 9, no. 12, pp. 819–825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Becquemont, A. Alfirevic, U. Amstutz et al., “Practical recommendations for pharmacogenomics-based prescription: 2010 ESF-UB conference on pharmacogenetics and pharmacogenomics,” Pharmacogenomics, vol. 12, no. 1, pp. 113–124, 2011. View at Publisher · View at Google Scholar
  56. K. R. Crews, A. Gaedigk, H. M. Dunnenberger et al., “Clinical Pharmacogenetics Implementation consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 321–326, 2012. View at Publisher · View at Google Scholar
  57. E. A. Fargher, K. Tricker, W. Newman et al., “Current use of pharmacogenetic testing: a national survey of thiopurine methyltransferase testing prior to azathioprine prescription,” Journal of Clinical Pharmacy and Therapeutics, vol. 32, no. 2, pp. 187–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. J. A. Johnson, L. Gong, M. Whirl-Carrillo et al., “Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing,” Clinical Pharmacology and Therapeutics, vol. 90, pp. 625–629, 2011. View at Publisher · View at Google Scholar
  59. M. A. Martin, T. E. Klein, B. J. Dong, M. Pirmohamed, D. W. Haas, and D. L. Kroetz, “Clinical pharmacogenetics implementation consortium guidelines for hla-B genotype and abacavir dosing,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 734–738, 2012. View at Publisher · View at Google Scholar
  60. M. V. Relling, E. E. Gardner, W. J. Sandborn et al., “Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing,” Clinical Pharmacology and Therapeutics, vol. 89, pp. 387–391, 2011. View at Publisher · View at Google Scholar
  61. S. A. Scott, K. Sangkuhl, E. E. Gardner et al., “Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy,” Clinical Pharmacology and Therapeutics, vol. 90, no. 2, pp. 328–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. Thompson, J. A. Aberg, P. Cahn et al., “Antiretroviral treatment of adult HIV infection: 2010 recommendations of the International AIDS Society-USA panel,” Journal of the American Medical Association, vol. 304, no. 3, pp. 321–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. R. A. Wilke, L. B. Ramsey, S. G. Johnson et al., “The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 112–117, 2012. View at Publisher · View at Google Scholar
  64. S. L. Chan, C. Suo, S. C. Lee, B. C. Goh, K. S. Chia, and Y. Y. Teo, “Translational aspects of genetic factors in the prediction of drug response variability: a case study of warfarin pharmacogenomics in a multi-ethnic cohort from Asia,” The Pharmacogenomics Journal, vol. 12, no. 4, pp. 312–318, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. N. A. Limdi, M. Wadelius, L. Cavallari et al., “Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups,” Blood, vol. 115, no. 18, pp. 3827–3834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. R. B. Altman, “Pharmacogenomics: “Noninferiority” is sufficient for initial implementation,” Clinical Pharmacology and Therapeutics, vol. 89, no. 3, pp. 348–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. C. M. Kelly and K. I. Pritchard, “CYP2D6 genotype as a marker for benefit of adjuvant tamoxifen in postmenopausal women: lessons learned,” Journal of the National Cancer Institute, vol. 104, no. 6, pp. 427–428, 2012. View at Publisher · View at Google Scholar
  68. M. J. Khoury, M. Gwinn, W. D. Dotson, and M. S. Bowen, “Is there a need for PGxceptionalism?” Genetics in Medicine, vol. 13, pp. 866–867, 2011.
  69. Y. Nakamura, M. J. Ratain, N. J. Cox, H. L. McLeod, D. L. Kroetz, and D. A. Flockhart, “Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast International Group 1-98 trial,” Journal of the National Cancer Institute, vol. 104, no. 16, pp. 1266–1268, 2012.
  70. J. Woodcock, “Assessing the clinical utility of diagnostics used in drug therapy,” Clinical Pharmacology and Therapeutics, vol. 88, no. 6, pp. 765–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. W. F. Lam, “How much evidence is necessary for pharmacogenomic testing implementation?” Clinical and Experimental Pharmacology, vol. 2, p. e107, 2012. View at Publisher · View at Google Scholar
  72. J. C. Stingl and J. Brockmöller, “Why, when, and how should pharmacogenetics be applied in clinical studies: current and future approaches to study designs,” Clinical Pharmacology and Therapeutics, vol. 89, no. 2, pp. 198–209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. C. S. Karapetis, S. Khambata-Ford, D. J. Jonker et al., “K-ras mutations and benefit from cetuximab in advanced colorectal cancer,” The New England Journal of Medicine, vol. 359, no. 17, pp. 1757–1765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. M. C. Deley, K. V. Ballman, J. Marandet, and D. Sargent, “Taking the long view: how to design a series of phase III trials to maximize cumulative therapeutic benefit,” Clinical Trials, vol. 9, pp. 283–292, 2012.
  75. S. D. Patterson, N. Cohen, M. Karnoub et al., “Prospective-retrospective biomarker analysis for regulatory consideration: white paper from the industry pharmacogenomics working group,” Pharmacogenomics, vol. 12, no. 7, pp. 939–951, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. J. P. Zhang, T. Lencz, and A. K. Malhotra, “D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis,” The American Journal of Psychiatry, vol. 167, no. 7, pp. 763–772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. E. P. Brass, “The gap between clinical trials and clinical practice: the use of pragmatic clinical trials to inform regulatory decision making,” Clinical Pharmacology and Therapeutics, vol. 87, no. 3, pp. 351–355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. R. Tunis, D. B. Stryer, and C. M. Clancy, “Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy,” Journal of the American Medical Association, vol. 290, no. 12, pp. 1624–1632, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. J. L. Anderson, B. D. Horne, S. M. Stevens et al., “A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II),” Circulation, vol. 125, pp. 1997–2005, 2012. View at Publisher · View at Google Scholar
  80. J. Kirchheiner, S. Bauer, I. Meineke et al., “Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers,” Pharmacogenetics, vol. 12, no. 2, pp. 101–109, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. J. L. Mega, T. Simon, J. P. Collet et al., “Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis,” Journal of the American Medical Association, vol. 304, no. 16, pp. 1821–1830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. A. M. Harmsze, J. W. van Werkum, J. M. Ten Berg et al., “CYP2C192 and CYP2C93 alleles are associated with stent thrombosis: a case-control study,” European Heart Journal, vol. 31, no. 24, pp. 3046–3053, 2010. View at Publisher · View at Google Scholar
  83. G. N. Levine, E. R. Bates, J. C. Blankenship et al., “ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: a report of the American College of Cardiology Foundation/American heart association task force on practice guidelines and the society for cardiovascular angiography and interventions,” Circulation, vol. 124, pp. 2574–2609, 2011. View at Publisher · View at Google Scholar
  84. J. A. Johnson, D. M. Roden, L. J. Lesko, E. Ashley, T. E. Klein, and A. R. Shuldiner, “Clopidogrel: a case for indication-specific pharmacogenetics,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 774–776, 2012. View at Publisher · View at Google Scholar
  85. D. R. Holmes, G. J. Dehmer, S. Kaul, D. Leifer, P. T. O'Gara, and C. M. Stein, “ACCF/AHA clinical alert: ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning” a report of the American college of cardiology foundation task force on clinical expert consensus documents and the American heart association,” Circulation, vol. 122, no. 5, pp. 537–557, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Lubomirov, S. Colombo, J. Di Iulio et al., “Association of pharmacogenetic markers with premature discontinuation of first-line anti-HIV therapy: an observational cohort study,” Journal of Infectious Diseases, vol. 203, no. 2, pp. 246–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. T. L. Kauf, R. A. Farkouh, S. R. Earnshaw, M. E. Watson, P. Maroudas, and M. G. Chambers, “Economic efficiency of genetic screening to inform the use of abacavir sulfate in the treatment of HIV,” PharmacoEconomics, vol. 28, no. 11, pp. 1025–1039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. W. C. Black, “The CE plane: a graphic representation of cost-effectiveness,” Medical Decision Making, vol. 10, no. 3, pp. 212–214, 1990. View at Scopus
  89. R. A. Rosenheck, D. L. Leslie, and J. A. Doshi, “Second-generation antipsychotics: cost-effectiveness, policy options, and political decision making,” Psychiatric Services, vol. 59, no. 5, pp. 515–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Sikich, J. A. Frazier, J. McClellan et al., “Double-blind comparison of first- and second-generation antipsychotics in early-onset schizophrenia and schizoaffective disorder: findings from the treatment of early-onset schizophrenia spectrum disorders (TEOSS) study,” American Journal of Psychiatry, vol. 165, no. 11, pp. 1420–1431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. B. Lerer, R. H. Segman, H. Fangerau et al., “Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism,” Neuropsychopharmacology, vol. 27, no. 1, pp. 105–119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. P. R. Bakker, P. N. van Harten, and J. van Os, “Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis,” Schizophrenia Research, vol. 83, no. 2-3, pp. 185–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Furuta, N. Shirai, M. Kodaira et al., “Pharmacogenomics-based tailored versus standard therapeutic regimen for eradication of H. pylori,” Clinical Pharmacology and Therapeutics, vol. 81, no. 4, pp. 521–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. R. H. Perlis, D. A. Ganz, J. Avorn et al., “Pharmacogenetic testing in the clinical management of schizophrenia: a decision-analytic model,” Journal of Clinical Psychopharmacology, vol. 25, no. 5, pp. 427–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. G. F. Guzauskas, D. A. Hughes, S. M. Bradley, and D. L. Veenstra, “A risk-benefit assessment of prasugrel, clopidogrel, and genotype-guided therapy in patients undergoing percutaneous coronary intervention,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 829–837, 2012. View at Publisher · View at Google Scholar
  96. E. S. Reese, C. Daniel Mullins, A. L. Beitelshees, and E. Onukwugha, “Cost-effectiveness of cytochrome P450 2C19 genotype screening for selection of antiplatelet therapy with clopidogrel or prasugrel,” Pharmacotherapy, vol. 32, no. 4, pp. 323–332, 2012. View at Publisher · View at Google Scholar
  97. M. H. Eckman, J. Rosand, S. M. Greenberg, and B. F. Gage, “Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation,” Annals of Internal Medicine, vol. 150, no. 2, pp. 73–83, 2009. View at Scopus
  98. J. H. S. You, K. K. N. Tsui, R. S. M. Wong, and G. Cheng, “Potential clinical and economic outcomes of CYP2C9 and VKORC1 genotype-guided dosing in patients starting warfarin therapy,” Clinical Pharmacology and Therapeutics, vol. 86, no. 5, pp. 540–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. F. W. Frueh, S. Amur, P. Mummaneni et al., “Pharmacogenomic biomarker information in drug labels approved by the United States Food and Drug Administration: prevalence of related drug use,” Pharmacotherapy, vol. 28, no. 8, pp. 992–998, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. M. A. Hamburg and F. S. Collins, “The path to personalized medicine,” The New England Journal of Medicine, vol. 363, no. 4, pp. 301–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. G. Bartlett, N. Zgheib, A. Manamperi et al., “Pharmacogenomics in primary care: a crucial entry point for global personalized medicine?” Current Pharmacogenomics and Personalized Medicine, vol. 10, no. 2, pp. 101–105, 2012. View at Publisher · View at Google Scholar
  102. J. D. Roberts, G. A. Wells, M. R. Le May et al., “Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial,” The Lancet, vol. 379, no. 9827, pp. 1705–1711, 2012. View at Publisher · View at Google Scholar
  103. J. T. Delaney, A. H. Ramirez, E. Bowton et al., “Predicting clopidogrel response using DNA samples linked to an electronic health record,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 257–263, 2012. View at Publisher · View at Google Scholar
  104. J. S. Schildcrout, J. C. Denny, E. Bowton et al., “Optimizing drug outcomes through pharmacogenetics: a case for preemptive genotyping,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 235–242, 2012. View at Publisher · View at Google Scholar
  105. C. A. Fernandez, C. Smith, W. Yang et al., “Concordance of DMET plus genotyping results with those of orthogonal genotyping methods,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 360–365, 2012. View at Publisher · View at Google Scholar
  106. J. Kirchheiner, K. Brøsen, M. L. Dahl et al., “CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages,” Acta Psychiatrica Scandinavica, vol. 104, no. 3, pp. 173–192, 2001. View at Scopus
  107. B. S. Finkelman, B. F. Gage, J. A. Johnson, C. M. Brensinger, and S. E. Kimmel, “Genetic warfarin dosing: tables versus algorithms,” Journal of the American College of Cardiology, vol. 57, no. 5, pp. 612–618, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. E. J. Stanek, C. L. Sanders, K. A. Taber et al., “Adoption of pharmacogenomic testing by US physicians: results of a nationwide survey,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 450–458, 2012. View at Publisher · View at Google Scholar
  109. D. Gurwitz, J. E. Lunshof, G. Dedoussis et al., “Pharmacogenomics education: International Society of pharmacogenomics recommendations for medical, pharmaceutical, and health schools deans of education,” The Pharmacogenomics Journal, vol. 5, pp. 221–225, 2005. View at Publisher · View at Google Scholar
  110. Y. W. F. Lam, “Rethinking pharmacogenomics education beyond health professionals: addressing the “Know-Do” gap across the personalized medicine innovation ecosystem,” Current Pharmacogenomics and Personalized Medicine, vol. 10, no. 4, pp. 277–287, 2012.
  111. K. B. Mccullough, C. M. Formea, K. D. Berg et al., “Assessment of the pharmacogenomics educational needs of pharmacists,” American Journal of Pharmaceutical Education, vol. 75, no. 3, p. 51, 2011. View at Scopus
  112. J. J. Swen, M. Nijenhuis, A. De Boer et al., “Pharmacogenetics: from bench to byte an update of guidelines,” Clinical Pharmacology and Therapeutics, vol. 89, no. 5, pp. 662–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. C. L. Overby, P. Tarczy-Hornoch, J. I. Hoath, I. J. Kalet, and D. L. Veenstra, “Feasibility of incorporating genomic knowledge into electronic medical records for pharmacogenomic clinical decision support,” BMC Bioinformatics, vol. 11, supplement 9, p. S10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. J. K. Hicks, K. R. Crews, J. M. Hoffman et al., “A clinician-driven automated system for integration of pharmacogenetic interpretations into an electronic medical record,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 563–566, 2012. View at Publisher · View at Google Scholar
  115. C. A. McCarty, A. Nair, D. M. Austin, and P. F. Giampietro, “Informed consent and subject motivation to participate in a large, population-based genomics study: the marshfield clinic personalized medicine research project,” Community Genetics, vol. 10, no. 1, pp. 2–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Xu, S. P. Stenner, S. Doan, K. B. Johnson, L. R. Waitman, and J. C. Denny, “MedEx: a medication information extraction system for clinical narratives,” Journal of the American Medical Informatics Association, vol. 17, no. 1, pp. 19–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. A. N. Kho, J. A. Pacheco, P. L. Peissig et al., “Electronic medical records for genetic research: results of the eMERGE consortium,” Science Translational Medicine, vol. 3, no. 79, Article ID 79re1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. A. H. Ramirez, Y. Shi, J. S. Schildcrout et al., “Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record,” Pharmacogenomics, vol. 13, pp. 407–418, 2012. View at Publisher · View at Google Scholar
  119. A. K. Jha, C. M. Desroches, E. G. Campbell et al., “Use of electronic health records in U.S. hospitals,” The New England Journal of Medicine, vol. 360, no. 16, pp. 1628–1638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. J. Cohen, A. Wilson, and K. Manzolillo, “Clinical and economic challenges facing pharmacogenomics,” The Pharmacogenomics Journal, 2012. View at Publisher · View at Google Scholar
  121. J. R. Trosman, S. L. Van Bebber, and K. A. Phillips, “Health technology assessment and private payers's coverage of personalized medicine,” The American Journal of Managed Care, vol. 17, supplement 5, pp. SP53–SP60, 2011.
  122. Food Drug Administration, “Guidance on pharmacogenetic tests and genetic tests for heritable markers”.
  123. E. B. Elkin, M. C. Weinstein, E. P. Winer, K. M. Kuntz, S. J. Schnitt, and J. C. Weeks, “HER-2 testing and trastuzumab therapy for metastatic breast cancer: a cost-effectiveness analysis,” Journal of Clinical Oncology, vol. 22, no. 5, pp. 854–863, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. M. E. Van den Akker-Van, D. Gurwitz, S. B. Detmar et al., “Cost-effectiveness of pharmacogenomics in clinical practice: a case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe,” Pharmacogenomics, vol. 7, no. 5, pp. 783–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. A. R. Hughes, W. R. Spreen, M. Mosteller et al., “Pharmacogenetics of hypersensitivity to abacavir: from PGx hypothesis to confirmation to clinical utility,” The Pharmacogenomics Journal, vol. 8, no. 6, pp. 365–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. U. S. Food and Drug Administration, “FDA approves Xalkori with companion diagnostic for a type of late-stage lung cancer,” 2011.
  127. E. D. Blair, “Assessing the value-adding impact of diagnostic-type tests on drug development and marketing,” Molecular Diagnosis and Therapy, vol. 12, no. 5, pp. 331–337, 2008. View at Scopus
  128. R. S. Epstein, T. P. Moyer, R. E. Aubert et al., “Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study),” Journal of the American College of Cardiology, vol. 55, no. 25, pp. 2804–2812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. J. L. Bevan, J. A. Lynch, T. N. Dubriwny et al., “Informed lay preferences for delivery of racially varied pharmacogenomics,” Genetics in Medicine, vol. 5, no. 5, pp. 393–399, 2003. View at Publisher · View at Google Scholar · View at Scopus
  130. S. B. Haga, J. M. O'Daniel, G. M. Tindall, I. R. Lipkus, and R. Agans, “Survey of US public attitudes toward pharmacogenetic testing,” The Pharmacogenomics Journal, pp. 197–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. G. Loukides, A. Gkoulalas-Divanis, and B. Malin, “Anonymization of electronic medical records for validating genome-wide association studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 7898–7903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. J. Aberdeen, S. Bayer, R. Yeniterzi et al., “The MITRE identification scrubber toolkit: design, training, and assessment,” International Journal of Medical Informatics, vol. 79, no. 12, pp. 849–859, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. L. G. Dressler and S. F. Terry, “How will GINA influence participation in pharmacogenomics research and clinical testing?” Clinical Pharmacology and Therapeutics, vol. 86, no. 5, pp. 472–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. A. C. J. W. Janssens, M. Gwinn, L. A. Bradley, B. A. Oostra, C. M. van Duijn, and M. J. Khoury, “A critical appraisal of the scientific basis of commercial genomic profiles used to assess health risks and personalize health interventions,” American Journal of Human Genetics, vol. 82, no. 3, pp. 593–599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. D. H. Spencer, C. Lockwood, E. Topol et al., “Direct-to-consumer genetic testing: reliable or risky?” Clinical Chemistry, vol. 57, no. 12, pp. 1641–1644, 2011. View at Publisher · View at Google Scholar
  136. E. A. Ashley, A. J. Butte, M. T. Wheeler et al., “Clinical assessment incorporating a personal genome,” The Lancet, vol. 375, no. 9725, pp. 1525–1535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. N. Grecco, N. Cohen, A. W. Warner et al., “PhRMA survey of pharmacogenomic and pharmacodynamic evaluations: what next?” Clinical Pharmacology and Therapeutics, vol. 91, pp. 1035–1043, 2012. View at Publisher · View at Google Scholar
  138. Strattera, Eli Lilly and Company, IN, USA, 2011.
  139. A. Inoue, T. Suzuki, T. Fukuhara et al., “Prospective phase II study of gefitinib for chemotherapy-naïve patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations,” Journal of Clinical Oncology, vol. 24, no. 21, pp. 3340–3346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  140. L. V. Sequist, R. G. Martins, D. Spigel et al., “First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations,” Journal of Clinical Oncology, vol. 26, no. 15, pp. 2442–2449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. K. Tamura, I. Okamoto, T. Kashii et al., “Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the west Japan thoracic oncology group trial (WJTOG0403),” British Journal of Cancer, vol. 98, no. 5, pp. 907–914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. C. H. Yang, C. J. Yu, J. Y. Shih et al., “Specific EGFR mutations predict treatment outcome of stage IIIB/IV patients with chemotherapy-naive non-small-cell lung cancer receiving first-line gefitinib monotherapy,” Journal of Clinical Oncology, vol. 26, no. 16, pp. 2745–2753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. K. Kobayashi, A. Inoue, K. Usui et al., “First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy,” Journal of Clinical Oncology, vol. 27, no. 9, pp. 1394–1400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. J. B. Singer, S. Lewitzky, E. Leroy et al., “A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury,” Nature Genetics, vol. 42, no. 8, pp. 711–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. C. F. Spraggs, L. R. Parham, C. M. Hunt, and C. T. Dollery, “Lapatinib-induced liver injury characterized by class II HLA and Gilbert's syndrome genotypes,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 647–652, 2012. View at Publisher · View at Google Scholar
  146. L. C. Surh, M. A. Pacanowski, S. B. Haga et al., “Learning from product labels and label changes: how to build pharmacogenomics into drug-development programs,” Pharmacogenomics, vol. 11, no. 12, pp. 1637–1647, 2010. View at Publisher · View at Google Scholar · View at Scopus