About this Journal Submit a Manuscript Table of Contents
ISRN Pharmacology
Volume 2013 (2013), Article ID 910743, 13 pages
http://dx.doi.org/10.1155/2013/910743
Review Article

Heparin and Related Drugs: Beyond Anticoagulant Activity

Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 5th Floor, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH, UK

Received 11 February 2013; Accepted 7 March 2013

Academic Editors: R. Fantozzi, G. Gervasini, T. Kumai, F. J. Miranda, R. Villalobos-Molina, and T. B. Vree

Copyright © 2013 Clive Page. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Mulloy, E. Gray, and T. W. Barrowcliffe, “Characterization of unfractionated heparin: comparison of materials from the last 50 years,” Thrombosis and Haemostasis, vol. 84, no. 6, pp. 1052–1056, 2000. View at Scopus
  2. R. Lever and C. P. Page, “Non-anticoagulant effects of heparin: an overview,” in Heparin—A Century of Progress, R. Lever, B. Mulloy, and C. P. Page, Eds., vol. 207 of Handbook of Experimental Pharmacology, pp. 281–305, Springer, Berlin, Germany, 2012. View at Publisher · View at Google Scholar
  3. C. P. Page, “One explanation of the asthma paradox: inhibition of natural anti-inflammatory mechanism by β2-agonists,” Lancet, vol. 337, no. 8743, pp. 717–720, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. D. E. Humphries, G. W. Wong, D. S. Friend et al., “Heparin is essential for the storage of specific granule proteases in mast cells,” Nature, vol. 400, no. 6746, pp. 769–772, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. W. F. Green, K. Konnaris, and A. J. Woolcock, “Effect of salbutamol, fenoterol, and sodium cromoglycate on the release of heparin from sensitized human lung fragments challenged with Dermatophagoides pteronyssinus allergen,” American Journal of Respiratory Cell and Molecular Biology, vol. 8, no. 5, pp. 518–521, 1993. View at Scopus
  6. J. R. Guyton, R. D. Rosenberg, A. W. Clowes, and M. J. Karnovsky, “Inhibition of rat arterial smooth muscle cell proliferation by heparin. in vivo studies with anticoagulant and nonanticoagulant heparin,” Circulation Research, vol. 46, no. 5, pp. 625–634, 1980. View at Scopus
  7. E. C. Lasser, R. A. Simon, S. G. Lyon, A. E. Hamblin, and R. Stein, “Heparin-like anticoagulants in asthma,” Allergy, vol. 42, no. 8, pp. 619–625, 1987. View at Scopus
  8. Z. Diamant, M. C. Timmers, H. Van Der Veen, C. P. Page, F. J. Van Der Meer, and P. J. Sterk, “Effect of inhaled heparin on allergen-induced early and late asthmatic responses in patients with atopic asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 6 I, pp. 1790–1795, 1996. View at Scopus
  9. K. E. Bendstrup, C. B. Chambers, J. I. Jensen, and M. T. Newhouse, “Lung deposition and clearance of inhaled 99mTc-heparin in healthy volunteers,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 5 I, pp. 1653–1658, 1999. View at Scopus
  10. M. S. Sy, E. Schneeberger, R. McCluskey, M. I. Greene, R. D. Rosenberg, and B. Benacerraf, “Inhibition of delayed-type hypersensitivity by heparin depleted of anticoagulant activity,” Cellular Immunology, vol. 82, no. 1, pp. 23–32, 1983. View at Publisher · View at Google Scholar
  11. E. A. M. Seeds and C. P. Page, “Heparin inhibits allergen-induced eosinophil infiltration into guinea-pig lung via a mechanism unrelated to its anticoagulant activity,” Pulmonary Pharmacology & Therapeutics, vol. 14, no. 2, pp. 111–119, 2001. View at Publisher · View at Google Scholar
  12. A. Fryer, Y. C. Huang, G. Rao et al., “Selective O-desulfation produces nonanticoagulant heparin that retains pharmacological activity in the lung,” Journal of Pharmacology and Experimental Therapeutics, vol. 282, no. 1, pp. 208–219, 1997. View at Scopus
  13. R. Lever, A. Smailbegovic, and C. P. Page, “Locally available heparin modulates inflammatory cell recruitment in a manner independent of anticoagulant activity,” European Journal of Pharmacology, vol. 630, no. 1-3, pp. 137–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Ahmed, J. Garrigo, and I. Danta, “Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin,” The New England Journal of Medicine, vol. 329, no. 2, pp. 90–95, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Ahmed, T. Syriste, R. Mendelssohn et al., “Heparin prevents antigen-induced airway hyperresponsiveness: interference with IP3-mediated mast cell degranulation?” Journal of Applied Physiology, vol. 76, no. 2, pp. 893–901, 1994. View at Scopus
  16. T. Ahmed, C. Campo, M. K. Abraham et al., “Inhibition of antigen-induced acute bronchoconstriction, airway hyperresponsiveness, and mast cell degranulation by a nonanticoagulant heparin: comparison with a low molecular weight heparin,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 6, pp. 1848–1855, 1997. View at Scopus
  17. G. Bazzoni, A. B. Nuñez, G. Mascellani, P. Bianchini, E. Dejana, and A. Del Maschio, “Effect of heparin, dermatan sulfate, and related oligo-derivatives on human polymorphonuclear leukocyte functions,” Journal of Laboratory and Clinical Medicine, vol. 121, no. 2, pp. 268–275, 1993. View at Scopus
  18. R. A. Brown, R. Lever, N. A. Jones, and C. P. Page, “Effects of heparin and related molecules upon neutrophil aggregation and elastase release in vitro,” British Journal of Pharmacology, vol. 139, no. 4, pp. 845–853, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Evangelista, P. Piccardoni, N. Maugeri, G. De Gaetano, and C. Cerletti, “Inhibition by heparin of platelet activation induced by neutrophil-derived cathepsin G,” European Journal of Pharmacology, vol. 216, no. 3, pp. 401–405, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Inase, R. E. Schreck, and S. C. Lazarus, “Heparin inhibits histamine release from canine mast cells,” American Journal of Physiology, vol. 264, no. 4, pp. L387–L390, 1993. View at Scopus
  21. R. Lever, W. T. Lo, M. Faraidoun et al., “Size-fractionated heparins have differential effects on human neutrophil function in vitro,” British Journal of Pharmacology, vol. 151, no. 6, pp. 837–843, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Piccardoni, V. Evangelista, A. Piccoli, G. De Gaetano, A. Walz, and C. Cerletti, “Thrombin-activated human platelets release two NAP-2 variants that stimulate polymorphonuclear leukocytes,” Thrombosis and Haemostasis, vol. 76, no. 5, pp. 780–785, 1996. View at Scopus
  23. M. J. Rohrer, A. S. Kestin, P. A. Ellis et al., “High-dose heparin suppresses platelet alpha granule secretion,” Journal of Vascular Surgery, vol. 15, no. 6, pp. 1000–1009, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Slungaard, G. M. Vercellotti, G. Walker, R. D. Nelson, and H. S. Jacob, “Tumor necrosis factor α/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium,” Journal of Experimental Medicine, vol. 171, no. 6, pp. 2025–2041, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Teixeira, A. G. Rossi, and P. G. Hellewell, “Adhesion mechanisms involved in C5a-induced eosinophil homotypic aggregation,” Journal of Leukocyte Biology, vol. 59, no. 3, pp. 389–396, 1996. View at Scopus
  26. F. Redini, J. M. Tixier, M. Petitou, J. Choay, L. Robert, and W. Hornebeck, “Inhibition of leucocyte elastase by heparin and its derivatives,” Biochemical Journal, vol. 252, no. 2, pp. 515–519, 1988. View at Scopus
  27. R. L. Walsh, T. J. Dillon, R. Scicchitano, and G. McLennan, “Heparin and heparan sulphate are inhibitors of human leucocyte elastase,” Clinical Science, vol. 81, no. 3, pp. 341–346, 1991. View at Scopus
  28. S. Pégorier, L. A. Wagner, G. J. Gleich, and M. Pretolani, “Eosinophil-derived cationic proteins activate the synthesis of remodeling factors by airway epithelial cells,” The Journal of Immunology, vol. 177, pp. 4861–4869, 2006.
  29. K. Fredens, R. Dahl, and P. Venge, “In vitro studies of the interaction between heparin and eosinophil cationic protein,” Allergy, vol. 46, no. 1, pp. 27–29, 1991. View at Scopus
  30. G. J. Swaminathan, D. G. Myszka, P. S. Katsamba, L. E. Ohnuki, G. J. Gleich, and K. R. Acharya, “Eosinophil-granule major basic protein, a C-type lectin, binds heparin,” Biochemistry, vol. 44, no. 43, pp. 14152–14158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Muramatsu and H. Muramatsu, “Glycosaminoglycan-binding cytokines as tumor markers,” Proteomics, vol. 8, no. 16, pp. 3350–3359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Shute, “Glycosaminoglycan and chemokine/growth factor interactions,” in Heparin—A Century of Progress, R. Lever, B. Mulloy, and C. P. Page, Eds., vol. 207 of Handbook of Experimental Pharmacology, pp. 307–324, Springer, Heidelberg, Germany, 2011. View at Publisher · View at Google Scholar
  33. F. Bono, P. Rigon, I. Lamarche, P. Savi, V. Salel, and J. M. Herbert, “Heparin inhibits the binding of basic fibroblast growth factor to cultured human aortic smooth-muscle cells,” Biochemical Journal, vol. 326, part 3, pp. 661–668, 1997. View at Scopus
  34. T. A. McCaffrey, D. J. Falcone, C. F. Brayton, L. A. Agarwal, F. G. Welt, and B. B. Weksler, “Transforming growth factor-b activity is potentiated by heparin via dislocation of the transforming growth factor-b/a2-macroglobulin inactive complex,” The Journal of Cell Biology, vol. 109, no. 1, pp. 441–448, 1989. View at Publisher · View at Google Scholar
  35. K. B. Okona-Mensah, E. Shittu, C. Page, J. Costello, and S. A. Kilfeather, “Inhibition of serum and transforming growth factor beta (TGF-β1)-induced DNA synthesis in confluent airway smooth muscle by heparin,” British Journal of Pharmacology, vol. 125, no. 4, pp. 599–606, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. A. W. Clowes and M. J. Karnowsky, “Suppression by heparin of smooth muscle cell proliferation in injured arteries,” Nature, vol. 265, no. 5595, pp. 625–626, 1977. View at Scopus
  37. V. Kanabar, S. J. Hirst, B. J. O'Connor, and C. P. Page, “Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle,” British Journal of Pharmacology, vol. 146, no. 3, pp. 370–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. A. Kilfeather, S. Tagoe, A. C. Perez, K. Okona-Mensa, R. Matin, and C. P. Page, “Inhibition of serum-induced proliferation of bovine tracheal smooth muscle cells in culture by heparin and related glycosaminoglycans,” British Journal of Pharmacology, vol. 114, no. 7, pp. 1442–1446, 1995. View at Scopus
  39. C. A. Dragstedt, J. A. Wells, E. Rocha, and M. Silva, “Inhibitory effect of heparin upon histamine release by trypsin, antigen, and protease,” Proceedings of the Society for Experimental Biology and Medicine, vol. 51, pp. 191–192, 1942.
  40. T. K. Ghosh, P. S. Eis, J. M. Mullaney, C. L. Ebert, and D. L. Gill, “Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin,” Journal of Biological Chemistry, vol. 263, no. 23, pp. 11075–11079, 1988. View at Scopus
  41. Y. Matzner, G. Marx, R. Drexler, and A. Eldor, “The Inhibitory effect of heparin and related glycosaminoglycans on neutrophil chemotaxis,” Thrombosis and Haemostasis, vol. 52, pp. 134–137, 1984.
  42. S. Li, Z. Zheng, X. Li, and M. Xiochun, “Unfractionated heparin inhibits lipopolysaccharide-induced response through blocking p38 MAPK and NF-KB activation on endothgelial cells,” Cytokine, vol. 60, no. 1, pp. 114–121, 2012. View at Publisher · View at Google Scholar
  43. C. Leculier, O. Benzerara, N. Couprie et al., “Specific binding between human neutrophils and heparin,” British Journal of Haematology, vol. 81, no. 1, pp. 81–85, 1992. View at Scopus
  44. J. A. Freischlag, M. D. Colburn, W. J. Quiñones-Baldrich, and W. S. Moore, “Heparin, urokinase, and ancrod alter neutrophil function,” Journal of Vascular Surgery, vol. 16, no. 4, pp. 565–574, 1992. View at Scopus
  45. F. L. Pasini, A. L. Pasqui, and L. Ceccatelli, “Heparin inhibition of polymorphonuclear leukocyte activation in vitro. A possible pharmacological approach to granulocyte-mediated vascular damage,” Thrombosis Research, vol. 35, no. 5, pp. 527–537, 1984. View at Scopus
  46. L. Silvestro, I. Viano, M. Macario et al., “Effects of heparin and its desulfated derivatives on leukocyte-endothelial adhesion,” Seminars in Thrombosis and Hemostasis, vol. 20, no. 3, pp. 254–258, 1994. View at Scopus
  47. A. Smailbegovic, R. Lever, and C. P. Page, “The effects of heparin on the adhesion of human peripheral blood mononuclear cells to human stimulated umbilical vein endothelial cells,” British Journal of Pharmacology, vol. 134, no. 4, pp. 827–836, 2001. View at Scopus
  48. Z. Johnson, M. H. Kosco-Vilbois, S. Herren et al., “Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system,” Journal of Immunology, vol. 173, no. 9, pp. 5776–5785, 2004. View at Scopus
  49. K. Ley, M. Cerrito, and K. E. Arfors, “Sulfated polysaccharides inhibit leukocyte rolling in rabbit mesentery venules,” American Journal of Physiology, vol. 260, no. 5, pp. H1667–H1673, 1991. View at Scopus
  50. R. M. Nelson, O. Cecconi, W. G. Roberts, A. Aruffo, R. J. Linhardt, and M. P. Bevilacqua, “Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation,” Blood, vol. 82, no. 11, pp. 3253–3258, 1993. View at Scopus
  51. A. Salas, M. Sans, A. Soriano et al., “Heparin attenuates TNF-alpha induced inflammatory response through a CD11b dependent mechanism,” Gut, vol. 47, no. 1, pp. 88–96, 2000. View at Publisher · View at Google Scholar
  52. G. J. Tangelder and K. E. Arfors, “Inhibition of leukocyte rolling in venules by protamine and sulfated polysaccharides,” Blood, vol. 77, no. 7, pp. 1565–1571, 1991.
  53. X. Xie, H. Thorlacius, J. Raud, P. Hedqvist, and L. Lindbom, “Inhibitory effect of locally administered heparin on leukocyte rolling and chemoattractant-induced firm adhesion in rat mesenteric venules in vivo,” British Journal of Pharmacology, vol. 122, no. 5, pp. 906–910, 1997. View at Publisher · View at Google Scholar
  54. M. Sasaki, C. M. Herd, and C. P. Page, “Effect of heparin and low-molecular weight heparinoid on PAF-induced airway responses in neonatally immunized rabbits,” British Journal of Pharmacology, vol. 110, no. 1, pp. 107–112, 1993. View at Scopus
  55. E. A. M. Seeds, A. P. Horne, D. J. Tyrrell, and C. P. Page, “The effect of inhaled heparin and related glycosaminoglycans on allergen-induced eosinophil infiltration in guinea-pigs,” Pulmonary Pharmacology, vol. 8, no. 2-3, pp. 97–105, 1995. View at Publisher · View at Google Scholar
  56. C. Vancheri, C. Mastruzzo, F. Armato et al., “Intranasal heparin reduces eosinophil recruitment after nasal allergen challenge in patients with allergic rhinitis,” Journal of Allergy and Clinical Immunology, vol. 108, no. 5, pp. 703–708, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. M. Teixeira and P. G. Hellewell, “Suppression by intradermal administration of heparin of eosinophil accumulation but not oedema formation in inflammatory reactions in guinea-pig skin,” British Journal of Pharmacology, vol. 110, no. 4, pp. 1496–1500, 1993. View at Scopus
  58. K. Yanaka, T. Nose, and B. J. Hindman, “Heparin ameliorates brain injury by inhibiting leukocyte accumulation,” Stroke, vol. 27, no. 11, pp. 2146–2147, 1996. View at Scopus
  59. J. Fritzsche, S. Alban, R. J. Ludwig et al., “The influence of various structural parameters of semisynthetic sulfated polysaccharides on the P-selectin inhibitory capacity,” Biochemical Pharmacology, vol. 72, no. 4, pp. 474–485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Koenig, K. Norgard-Sumnicht, R. Linhardt, and A. Varki, “Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins: implications for the use of unfractionated and low molecular weight heparins as therapeutic agents,” Journal of Clinical Investigation, vol. 101, no. 4, pp. 877–889, 1998. View at Scopus
  61. L. Giuffrè, A. S. Cordey, N. Monai, Y. Tardy, M. Schapira, and O. Spertini, “Monocyte adhesion to activated aortic endothelium: role of L-selectin and heparan sulfate proteoglycans,” Journal of Cell Biology, vol. 136, no. 4, pp. 945–956, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. M. S. Diamond, R. Alon, C. A. Parkos, M. T. Quinn, and T. A. Springer, “Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD18),” Journal of Cell Biology, vol. 130, no. 6, pp. 1473–1482, 1995. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Peter, M. Schwarz, C. Conradt et al., “Heparin inhibits ligand binding to the leukocyte integrin Mac-1 (CD11b/CD18),” Circulation, vol. 100, no. 14, pp. 1533–1539, 1999. View at Scopus
  64. M. P. Skinner, C. M. Lucas, G. F. Burns, C. N. Chesterman, and M. C. Berndt, “GMP-140 binding to neutrophils is inhibited by sulfated glycans,” Journal of Biological Chemistry, vol. 266, no. 9, pp. 5371–5374, 1991. View at Scopus
  65. J. L. Stevenson, S. H. Choi, and A. Varki, “Differential metastasis inhibition by clinically relevant levels of heparins—correlation with selectin inhibition, not antithrombotic activity,” Clinical Cancer Research, vol. 11, no. 19, pp. 7003–7011, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. J. L. Stevenson, A. Varki, and L. Borsig, “Heparin attenuates metastasis mainly due to inhibition of P- and L-selectin, but non-anticoagulant heparins can have additional effects,” Thrombosis Research, vol. 120, no. 2, pp. S107–S111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. M. B. Lawrence and T. A. Springer, “Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins,” Cell, vol. 65, no. 5, pp. 859–873, 1991. View at Scopus
  68. B. M. Revelle, D. Scott, and P. J. Beck, “Single amino acid residues in the E-and P-selectin epidermal growth factor domains can determine carbohydrate binding specificity,” The Journal of Biological Chemistry, vol. 271, pp. 16160–16170, 1996. View at Publisher · View at Google Scholar
  69. S. M. Watt, J. Williamson, H. Genevier et al., “The heparin binding PECAM-1 adhesion molecule is expressed by CD34+ hematopoietic precursor cells with early myeloid and B-lymphoid cell phenotypes,” Blood, vol. 82, no. 9, pp. 2649–2663, 1993. View at Scopus
  70. H. M. DeLisser, H. C. Yan, P. J. Newman, W. A. Muller, C. A. Buck, and S. M. Albelda, “Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans,” Journal of Biological Chemistry, vol. 268, no. 21, pp. 16037–16046, 1993. View at Scopus
  71. G. J. Cole, A. Loewy, and L. Glaser, “Neuronal cell-cell adhesion depends on interactions of N-CAM with heparin-like molecules,” Nature, vol. 320, no. 6061, pp. 445–447, 1986. View at Scopus
  72. V. V. Kiselyov, V. Berezin, T. E. Maar et al., “The first immunoglobulin-like neural cell adhesion molecule (NCAM) domain is involved in double-reciprocal interaction with the second immunoglobulin-like NCAM domain and in heparin binding,” Journal of Biological Chemistry, vol. 272, no. 15, pp. 10125–10134, 1997. View at Publisher · View at Google Scholar · View at Scopus
  73. S. G. Kallapur and R. A. Akeson, “The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans,” Journal of Neuroscience Research, vol. 33, no. 4, pp. 538–548, 1992. View at Publisher · View at Google Scholar · View at Scopus
  74. A. K. Powell, E. A. Yates, D. G. Fernig, and J. E. Turnbull, “Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches,” Glycobiology, vol. 14, no. 4, pp. 17R–30R, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Turnbull, A. Powell, and S. Guimond, “Heparan sulfate: decoding a dynamic multifunctional cell regulator,” Trends in Cell Biology, vol. 11, no. 2, pp. 75–82, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. M. B. Fairbanks, A. M. Mildner, J. W. Leone et al., “Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer,” Journal of Biological Chemistry, vol. 274, no. 42, pp. 29587–29590, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. M. D. Hulett, C. Freeman, B. J. Hamdorf, R. T. Baker, M. J. Harris, and C. R. Parish, “Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis,” Nature Medicine, vol. 5, no. 7, pp. 803–809, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. P. H. Kussie, J. D. Hulmes, D. L. Ludwig et al., “Cloning and functional expression of a human heparanase gene,” Biochemical and Biophysical Research Communications, vol. 261, no. 1, pp. 183–187, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. I. Vlodavsky, Y. Friedmann, M. Elkin et al., “Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis,” Nature Medicine, vol. 5, no. 7, pp. 793–802, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. C. R. Parish, C. Freeman, and M. D. Hulett, “Heparanase: a key enzyme involved in cell invasion,” Biochimica et Biophysica Acta, vol. 1471, no. 3, pp. M99–M108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. M. D. Hulett, J. R. Hornby, S. J. Ohms et al., “Identification of active-site residues of the pro-metastatic endoglycosidase heparanase,” Biochemistry, vol. 39, no. 51, pp. 15659–15667, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. E. A. McKenzie, “Heparanase: a target for drug discovery in cancer and inflammation,” British Journal of Pharmacology, vol. 151, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar
  83. E. McKenzie, K. Tyson, A. Stamps et al., “Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member,” Biochemical and Biophysical Research Communications, vol. 276, no. 3, pp. 1170–1177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. S. H. Murch, T. T. MacDonald, J. A. Walker-Smith, M. Levin, P. Lionetti, and N. J. Klein, “Disruption of sulphated glycosaminoglycans in intestinal inflammation,” Lancet, vol. 341, no. 8847, pp. 711–714, 1993. View at Publisher · View at Google Scholar · View at Scopus
  85. J. K. Shute, J. Parmar, S. T. Holgate, and P. H. Howarth, “Urinary glycosaminoglycan levels are increased in acute severe asthma—a role for eosinophil-derived gelatinase B?” International Archives of Allergy and Immunology, vol. 113, no. 1-3, pp. 366–367, 1997. View at Scopus
  86. M. Bar-Ner, A. Eldor, L. Wasserman et al., “Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species,” Blood, vol. 70, no. 2, pp. 551–557, 1987. View at Scopus
  87. O. Lider, Y. A. Mekori, T. Miller et al., “Inhibition of T lymphocyte heparanase by heparin prevents T cell migration and T cell-mediated immunity,” European Journal of Immunology, vol. 20, no. 3, pp. 493–499, 1990. View at Scopus
  88. Y. Matzner, I. Vlodavsky, M. Bar-Ner, R. Ishai-Michaeli, and A. I. Tauber, “Subcellular localization of heparanase in human neutrophils,” Journal of Leukocyte Biology, vol. 51, no. 6, pp. 519–524, 1992. View at Scopus
  89. O. Lider, E. Baharav, Y. A. Mekori et al., “Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins,” Journal of Clinical Investigation, vol. 83, no. 3, pp. 752–756, 1989. View at Scopus
  90. D. O. Willenborg and C. R. Parish, “Inhibition of allergic encephalomyelitis in rats by treatment with sulfated polysaccharides,” Journal of Immunology, vol. 140, no. 10, pp. 3401–3405, 1988. View at Scopus
  91. A. Gorski, M. Lao, L. Gradowska, M. Nowaczyk, M. Wasik, and Z. Lagodzinski, “New strategies of heparin treatment used to prolong allograft survival,” Transplantation Proceedings, vol. 23, no. 4, pp. 2251–2252, 1991. View at Scopus
  92. E. Naparstek, S. Slavin, L. Weiss et al., “Low-dose heparin inhibits acute graft versus host disease in mice,” Bone Marrow Transplantation, vol. 12, no. 3, pp. 185–189, 1993. View at Scopus
  93. G. Chen, D. Wang, R. Vikramadithyan et al., “Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression,” Biochemistry, vol. 43, no. 17, pp. 4971–4977, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. E. Edovitsky, I. Lerner, E. Zcharia, T. Peretz, I. Vlodavsky, and M. Elkin, “Role of endothelial heparanase in delayed-type hypersensitivity,” Blood, vol. 107, no. 9, pp. 3609–3616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. E. A. M. Seeds, J. Hanss, and C. P. Page, “The effect of heparin and related proteoglycans on allergen and PAF-induced eosinophil infiltration,” Journal of Lipid Mediators, vol. 7, no. 3, pp. 269–278, 1993. View at Scopus
  96. J. Carr, “The anti-inflammatory action of heparin: heparin as an antagonist to histamine, bradykinin and prostaglandin E1,” Thrombosis Research, vol. 16, no. 3-4, pp. 507–516, 1979. View at Publisher · View at Google Scholar
  97. H. Jones, W. Paul, and C. P. Page, “The effects of heparin and related molecules on vascular permeability and neutrophil accumulation in rabbit skin,” British Journal of Pharmacology, vol. 135, no. 2, pp. 469–479, 2002. View at Scopus
  98. H. Maarsingh, J. De Boer, H. F. Kauffman, J. Zaagsma, and H. Meurs, “Heparin normalizes allergen-induced nitric oxide deficiency and airway hyperresponsiveness,” British Journal of Pharmacology, vol. 142, no. 8, pp. 1293–1299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Becker, M. D. Menger, and H. A. Lehr, “Heparin-released superoxide dismutase inhibits postischemic leukocyte adhesion to venular endothelium,” American Journal of Physiology, vol. 267, no. 3, pp. H925–H930, 1994. View at Scopus
  100. K. S. Kilgore, E. J. Tanhehco, K. B. Naylor, and B. R. Lucchesi, “Ex vivo reversal of heparin-mediated cardioprotection by heparinase after ischemia and reperfusion,” Journal of Pharmacology and Experimental Therapeutics, vol. 290, no. 3, pp. 1041–1047, 1999. View at Scopus
  101. J. M. Simard, D. Schreibman, E. F. Aldrich et al., “Unfractionated heparin: multitargeted therapy for delayed neurological deficits induced by subarachnoid hemorrhage,” Neurocritical Care, vol. 13, no. 3, pp. 439–449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. I. H. Tekkök, S. Tekkök, O. E. Ozcan, T. Erbengi, and A. Erbengi, “Preventive effect of intracisternal heparin for proliferative angiopathy after experimental subarachnoid haemorrhage in rats,” Acta Neurochirurgica, vol. 127, no. 1-2, pp. 112–117, 1994. View at Scopus
  103. D. A. Dolowitz and T. F. Dougherty, “The use of heparin as an anti-inflammatory agent,” Laryngo­Scope, vol. 70, pp. 873–874, 1960.
  104. D. A. Dolowitz and T. F. Dougherty, “The use of heparin in the control of allergies,” Annals of Allergy, vol. 23, pp. 309–313, 1965. View at Scopus
  105. M. Antczak and P. Kuna, “Heparin inhibits allergen induced airway response in asthmatics. Results of a double blind placebo-controlled, crossover study,” Journal of Allergy and Clinical Immunology, vol. 95, p. 386, 1995.
  106. S. D. Bowler, S. M. Smith, and P. S. Laverombe, “Heparin inhibits the immediate response to antigen in the skin and lungs of allergic subjects,” The American Review of Respiratory Disease, vol. 147, no. 1, pp. 160–163, 1993. View at Publisher · View at Google Scholar
  107. P. Venge, B. Pedersen, L. Håkansson, R. Hällgren, G. Lindblad, and R. Dahl, “Subcutaneous administration of hyaluronan reduces the number of infectious exacerbations in patients with chronic bronchitis,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 1, pp. 312–316, 1996. View at Scopus
  108. R. A. Brown, L. Allegra, M. G. Matera, C. P. Page, and M. Cazzola, “Additional clinical benefit of enoxaparin in COPD patients receiving salmeterol and fluticasone propionate in combination,” Pulmonary Pharmacology and Therapeutics, vol. 19, no. 6, pp. 419–424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. R. C. Evans, V. S. Wong, A. I. Morris, and J. M. Rhodes, “Treatment of corticosteroid-resistant ulcerative colitis with heparin—a report of 16 cases,” Alimentary Pharmacology & Therapeutics, vol. 11, no. 6, pp. 1037–1040, 1997. View at Publisher · View at Google Scholar
  110. P. R. Gaffney, J. J. O'Leary, C. T. Doyle et al., “Response to heparin in patients with ulcerative colitis,” Lancet, vol. 337, no. 8735, pp. 238–239, 1991. View at Publisher · View at Google Scholar · View at Scopus
  111. P. R. Gaffney, C. T. Doyle, A. Gaffney, J. Hogan, D. P. Hayes, and P. Annis, “Paradoxical response to heparin in 10 patients with ulcerative colitis,” American Journal of Gastroenterology, vol. 90, no. 2, pp. 220–223, 1995. View at Scopus
  112. N. P. Michell, P. Lalor, and M. J. Langman, “Heparin therapy for ulcerative colitis? Effects and mechanisms,” European Journal of Gastroenterology & Hepatology, vol. 13, pp. 449–456, 2001. View at Publisher · View at Google Scholar
  113. N. Chande, J. W. McDonald, and J. K. Macdonald, “Unfractionated or low-molecular weight heparin for induction of remission in ulcerative colitis,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD006774, 2008. View at Scopus
  114. J. Shen, Z. H. Ran, J. L. Tong, and S. D. Xiao, “Meta-analysis: the utility and safety of heparin in the treatment of active ulcerative colitis,” Alimentary Pharmacology & Therapeutics, vol. 26, no. 5, pp. 653–663, 2007. View at Publisher · View at Google Scholar
  115. L. Borsig, “Antimetastatic activities of heparins and modified heparins. Experimental evidence,” Thrombosis Research, vol. 125, pp. S66–71, 2010. View at Scopus
  116. H. Engelberg, “Actions of heparin that may affect the malignant process,” Cancer, vol. 85, pp. 257–272, 1999.
  117. R. J. K. Hettiarachchi, S. M. Smorenburg, J. Ginsberg, M. Levine, M. H. Prins, and H. R. Buller, “Do heparins do more than just treat thrombosis? The influence of heparins on cancer spread,” Thrombosis and Haemostasis, vol. 82, no. 2, pp. 947–952, 1999. View at Scopus
  118. S. A. Mousa, “Heparin and low-molecular weight heparins in thrombosis and beyond,” Methods in Molecular Biology, vol. 663, pp. 109–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. T. M. H. Niers, C. P. W. Klerk, M. DiNisio et al., “Mechanisms of heparin induced anti-cancer activity in experimental cancer models,” Critical Reviews in Oncology/Hematology, vol. 61, no. 3, pp. 195–207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. S. M. Smorenburg and C. J. F. Van Noorden, “The complex effects of heparins on cancer progression and metastasis in experimental studies,” Pharmacological Reviews, vol. 53, no. 1, pp. 93–105, 2001. View at Scopus
  121. L. R. Zacharski and D. L. Ornstein, “Heparin and cancer,” Thrombosis and Haemostasis, vol. 80, no. 1, pp. 10–23, 1988.
  122. L. R. Zacharski, D. L. Ornstein, and A. C. Mamourian, “Low-molecular-weight heparin and cancer,” Seminars in Thrombosis and Hemostasis, vol. 26, no. 3, pp. 69–77, 2000. View at Scopus
  123. E. A. Akl, F. F. van Doormaal, M. Barba et al., “Parenteral anticoagulation for prolonging survival in patients with cancer who have no other indication for anticoagulation,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD006652, 2007. View at Scopus
  124. N. M. Kuderer, A. A. Khorana, G. H. Lyman, and C. W. Francis, “A meta-analysis and systematic review of the efficacy and safety of anticoagulants as cancer treatment: impact on survival and bleeding complications,” Cancer, vol. 110, no. 5, pp. 1149–1161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. I. Vlodavsky and Y. Friedmann, “Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis,” Journal of Clinical Investigation, vol. 108, no. 3, pp. 341–347, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Borsig, R. Wong, J. Feramisco, D. R. Nadeau, N. M. Varki, and A. Varki, “Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3352–3357, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. S. C. Pitchford, H. Yano, R. Lever et al., “Platelets are essential for leukocyte recruitment in allergic inflammation,” Journal of Allergy and Clinical Immunology, vol. 112, no. 1, pp. 109–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. D. F. Alonso, G. E. Bertolesi, E. F. Farias, A. M. Eijan, E. B. D. Joffe, and L. L. De Cidre, “Antimetastatic effects associated with anticoagulant properties of heparin and chemically modified heparin species in a mouse mammary tumor model,” Oncology Reports, vol. 3, no. 1, pp. 219–222, 1996.
  129. S. A. Mousa, R. Linhardt, J. L. Francis, and A. Amirkhosravi, “Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular-weight heparin, enoxaparin,” Thrombosis and Haemostasis, vol. 96, no. 6, pp. 816–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Nakajima, T. Irimura, and G. L. Nicolson, “Heparanases and tumor metastasis,” Journal of Cellular Biochemistry, vol. 36, no. 2, pp. 157–167, 1988. View at Scopus
  131. T. Sciumbata, P. Caretto, P. Pirovano et al., “Treatment with modified heparins inhibits experimental metastasis formation and leads, in some animals, to long-term survival,” Invasion and Metastasis, vol. 16, no. 3, pp. 132–143, 1996. View at Scopus
  132. A. Amirkhosravi, T. Meyer, M. Amaya et al., “The role of tissue factor pathway inhibitor in tumor growth and metastasis,” Seminars in Thrombosis and Hemostasis, vol. 33, no. 7, pp. 643–652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. I. Vlodavsky, A. Eldor, A. Haimovitz-Friedman et al., “Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation,” Invasion and Metastasis, vol. 12, no. 2, pp. 112–127, 1992. View at Scopus
  134. H. Takahashi, S. Ebihara, T. Okazaki, M. Asada, H. Sasaki, and M. Yamaya, “A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity,” British Journal of Pharmacology, vol. 146, no. 3, pp. 333–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. A. A. Khorana, A. Sahni, O. D. Altland, and C. W. Francis, “Heparin inhibition of endothelial cell proliferation and organization is dependent on molecular weight,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, pp. 2110–2115, 2003. View at Publisher · View at Google Scholar
  136. M. Marchetti, A. Vignoli, L. Russo et al., “Endothelial capillary tube formation and cell proliferation induced by tumor cells are affected by low molecular weight heparins and unfractionated heparin,” Thrombosis Research, vol. 121, no. 5, pp. 637–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. B. Mehrad, M. P. Keane, and R. M. Strieter, “Chemokines as mediators of angiogenesis,” Thrombosis and Haemostasis, vol. 97, no. 5, pp. 755–762, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. L. C. Cancio, “Airway management and smoke inhalation injury in the burn patient,” Clinics in Plastic Surgery, vol. 36, no. 4, pp. 555–567, 2009. View at Publisher · View at Google Scholar
  139. M. H. Toon, M. O. Maybauer, J. E. Greenwood, D. M. Maybauer, and J. F. Fraser, “Management of acute smoke inhalation injury,” Critical Care and Resuscitation, vol. 12, no. 1, pp. 53–61, 2010. View at Scopus
  140. A. C. Miller, A. Rivero, S. Ziad, D. J. Smith, and E. M. Elamin, “Influence of nebulized unfractionated heparin and N-acetylcysteine in acute lung injury after smoke inhalation injury,” Journal of Burn Care and Research, vol. 30, no. 2, pp. 249–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Oremus, M. D. Hanson, R. Whitlock et al., “A systematic review of heparin to treat burn injury,” Journal of Burn Care and Research, vol. 28, no. 6, pp. 794–804, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. J. M. F. Chacon, M. L. M. De Andrea, L. Blanes, and L. M. Ferreira, “Effects of topical application of 10,000 IU heparin on patients with perineal dermatitis and second-degree burns treated in a public pediatric hospital,” Journal of Tissue Viability, vol. 19, no. 4, pp. 150–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. R. K. Cribbs, P. A. Harding, M. H. Luquette, and G. E. Besner, “Endogenous production of heparin-binding EGF-like growth factor during murine partial-thickness burn wound healing,” Journal of Burn Care and Rehabilitation, vol. 23, no. 2, pp. 116–125, 2002. View at Scopus
  144. R. K. Cribbs, M. H. Luquette, and G. E. Besner, “Acceleration of partial-thickness burn wound healing with topical application of heparin-binding EGF-like growth factor (HB-EGF),” Journal of Burn Care and Rehabilitation, vol. 19, no. 2, pp. 95–101, 1998. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Radulescu, H. Y. Zhang, C. L. Chen et al., “Heparin-binding egf-like growth factor promotes intestinal anastomotic healing,” Journal of Surgical Research, vol. 171, no. 2, pp. 540–550, 2010. View at Publisher · View at Google Scholar
  146. R. N. Prince, E. R. Schreiter, P. Zou et al., “The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release,” Journal of Cell Science, vol. 123, no. 13, pp. 2308–2318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Sen, I. Meteoglu, M. Ogurlu, S. Sen, O. O. Derinceoz, and S. Barutca, “Topical heparin: a promising agent for the prevention of tracheal stenosis in airway surgery,” Journal of Surgical Research, vol. 157, no. 1, pp. e23–e29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. J. D. Lilly and C. L. Parsons, “Bladder surface glycosaminoglycans is a human epithelial permeability barrier,” Surgery, Gynecology & Obstetrics, vol. 171, no. 6, pp. 493–496, 1990.
  149. M. Hellgren, E. Andersson, B. Bystrom et al., “Dalteparin shortens human labour,” Journal of Thrombosis and Haemostasis, vol. 5, Supplement 2, 2007.
  150. I. Osman, A. Young, M. A. Ledingham et al., “Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term,” Molecular Human Reproduction, vol. 9, no. 1, pp. 41–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  151. G. Ekman-Ordeberg, M. Hellgren, A. Kerud et al., “Low molecular weight heparin stimulates myometrial contractility and cervical remodeling in vitro,” Acta Obstetricia et Gynecologica Scandinavica, vol. 88, no. 9, pp. 984–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. D. J. Serisier, J. K. Shute, P. M. Hockey, B. Higgins, J. Conway, and M. P. Carroll, “Inhaled heparin in cystic fibrosis,” European Respiratory Journal, vol. 27, no. 2, pp. 354–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. M. King and B. K. Rubin, “Pharmacological approaches to discovery and development of new mucolytic agents,” Advanced Drug Delivery Reviews, vol. 54, no. 11, pp. 1475–1490, 2002. View at Publisher · View at Google Scholar · View at Scopus
  154. L. M. Hiebert, “Oral heparins,” Clinical Laboratory, vol. 48, pp. 111–116, 2002.
  155. L. M. Hiebert, T. Ping, and S. M. Wice, “Enhanced antithrombotic effects of unfractionated heparin in rats after repeated oral doses and its relationship to endothelial heparin concentration,” British Journal of Pharmacology, vol. 153, no. 6, pp. 1177–1184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Pinel, S. M. Wice, and L. M. Hiebert, “Orally administered heparins prevent arterial thrombosis in a rat model,” Thrombosis and Haemostasis, vol. 91, no. 5, pp. 919–926, 2004. View at Scopus
  157. R. A. Baughman, S. C. Kapoor, R. K. Agarwal, J. Kisicki, F. Catella-Lawson, and G. A. FitzGerald, “Oral delivery of anticoagulant doses of heparin. A randomized, double- blind, controlled study in humans,” Circulation, vol. 98, no. 16, pp. 1610–1615, 1998. View at Scopus
  158. S. D. Berkowitz, V. J. Marder, G. Kosutic, and R. A. Baughman, “Oral heparin administration with a novel drug delivery agent (SNAC) in healthy volunteers and patients undergoing elective total hip arthroplasty,” Journal of Thrombosis and Haemostasis, vol. 1, no. 9, pp. 1914–1919, 2003. View at Scopus
  159. M. D. Gonze, K. Salartash, W. C. Sternbergh, R. A. Baughman, A. Leone-Bay, and S. R. Money, “Orally administered unfractionated heparin with carrier agent is therapeutic for deep venous thrombosis,” Circulation, vol. 101, no. 22, pp. 2658–2661, 2000. View at Scopus
  160. G. F. Pineo, R. D. Hull, and V. J. Marder, “Orally active heparin and low-molecular-weight heparin,” Current Opinion in Pulmonary Medicine, vol. 7, no. 5, pp. 344–348, 2001. View at Scopus
  161. S. Bai and F. Ahsan, “Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin,” Pharmaceutical Research, vol. 26, no. 3, pp. 539–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. S. Bai and F. Ahsan, “Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism,” Journal of Pharmaceutical Sciences, vol. 99, no. 11, pp. 4554–4564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. S. Bai, V. Gupta, and F. Ahsan, “Inhalable lactose-based dry powder formulations of low molecular weight heparin,” Journal of Aerosol Medicine and Pulmonary Drug Delivery, vol. 23, no. 2, pp. 97–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. Y. Qi, G. Zhao, D. Liu et al., “Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 26, pp. 9867–9872, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. A. Rawat, T. Yang, A. Hussain, and F. Ahsan, “Complexation of a poly-L-arginine with low molecular weight heparin enhances pulmonary absorption of the drug,” Pharmaceutical Research, vol. 25, no. 4, pp. 936–948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. T. Yang, F. Mustafa, and F. Ahsan, “Alkanoylsucroses in nasal delivery of low molecular weight heparins: in vivo absorption and reversibility studies in rats,” Journal of Pharmacy and Pharmacology, vol. 56, no. 1, pp. 53–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  167. T. Yang, F. Mustafa, S. Bai, and F. Ahsan, “Pulmonary delivery of low molecular weight heparins,” Pharmaceutical Research, vol. 21, no. 11, pp. 2009–2016, 2004. View at Publisher · View at Google Scholar
  168. F. Mustafa, T. Yang, M. A. Khan, and F. Ahsan, “Chain length-dependent effects of alkylmaltosides on nasal absorption of enoxaparin,” Journal of Pharmaceutical Sciences, vol. 93, no. 3, pp. 675–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  169. T. Yang, A. Hussain, J. Paulson, T. J. Abbruscato, and F. Ahsan, “Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies,” Pharmaceutical Research, vol. 21, no. 7, pp. 1127–1136, 2004. View at Publisher · View at Google Scholar
  170. T. Yang, A. Hussain, S. Bai, I. A. Khalil, H. Harashima, and F. Ahsan, “Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin,” Journal of Controlled Release, vol. 115, no. 3, pp. 289–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  171. C. L. Baer, W. M. Bennett, D. A. Folwick, and R. S. Erickson, “Effectiveness of a jet injection system in administering morphine and heparin to healthy adults,” American Journal of Critical Care, vol. 5, pp. 42–48, 1996.
  172. S. Wagner, G. Dues, D. Sawitzky, P. Frey, and B. Christ, “Assessment of the biological performance of the needle-free injector INJEX using the isolated porcine forelimb,” British Journal of Dermatology, vol. 150, no. 3, pp. 455–461, 2004. View at Publisher · View at Google Scholar
  173. S. J. Hollingsworth, K. Hoque, D. Linnard, D. G. Corry, and S. G. Barker, “Delivery of low molecular weight heparin for prophylaxis against deep vein thrombosis using a novel, needle-less injection device (J-Tip),” Annals of the Royal College of Surgeons of England, vol. 82, no. 6, pp. 428–431, 2000.
  174. B. Casu, I. Vlodavsky, and R. D. Sanderson, “Non-anticoagulant heparins and inhibition of cancer,” Pathophysiology of Haemostasis and Thrombosis, vol. 36, no. 3-4, pp. 195–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. S. A. Mousa, “Heparin, low molecular weight heparin, and derivatives in thrombosis, angiogenesis, and inflammation: emerging links,” Seminars in Thrombosis and Hemostasis, vol. 33, no. 5, pp. 524–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Baba, R. Snoeck, R. Pauwels, and E. De Clercq, “Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus,” Antimicrobial Agents and Chemotherapy, vol. 32, no. 11, pp. 1742–1745, 1988. View at Scopus
  177. A. D. Sezer, F. Hatipoǧlu, E. Cevher, Z. Oǧurtan, A. L. Baş, and J. Akbuǧa, “Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation,” AAPS PharmSciTech, vol. 8, no. 2, article no. 39, 2007. View at Scopus
  178. T. Ahmed, G. Smith, I. Vlahov, and W. M. Abraham, “Inhibition of allergic airway responses by heparin derived oligosaccharides: identification of a tetrasaccharide sequence,” Respiratory Research, vol. 13, article 6, 2012. View at Publisher · View at Google Scholar
  179. I. C. Severin, A. Soares, J. Hantson et al., “Glycosaminoglycan analogues as a novel anti-inflammatory strategy,” Frontiers in Immunology, vol. 293, pp. 1–12, 2012.
  180. S. Colliec-Jouault, C. Bavington, and C. Delbarre-Lodrat, “Heparin-like entities from marine organisms,” in Heparin—A Century of Progress, R. Lever, B. Mulloy, and C. P. Page, Eds., vol. 207 of Handbook of Experimetnal Pharmacology, pp. 423–429, Springer, Berlin, Germany, 2012. View at Publisher · View at Google Scholar