About this Journal Submit a Manuscript Table of Contents
ISRN Polymer Science
Volume 2013 (2013), Article ID 952379, 22 pages
http://dx.doi.org/10.1155/2013/952379
Review Article

50 Years of the K-BKZ Constitutive Relation for Polymers

School of Mining Engineering and Metallurgy, National Technical University of Athens, Zografou, 157 80 Athens, Greece

Received 13 November 2012; Accepted 1 January 2013

Academic Editors: Y. Chen, X. Colin, H. Kaddami, and S. Yamazaki

Copyright © 2013 Evan Mitsoulis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. I. Tanner, Engineering Rheology, Oxford University Press, Oxford, UK, 2nd edition, 2000.
  2. R. I. Tanner and K. Walters, Rheology: An Historical Perspective, Elsevier, Amsterdam, The Netherlands, 1998.
  3. Heraclitus, “On Nature,” 2012, http://en.wikipedia.org/wiki/Heraclitus.
  4. C. W. Macosko, Rheology: Principles, Measurements, and Applications, VCH Publishers, New York, NY, USA, 1994.
  5. 2012, http://www.rheology-esr.net/ICR2012.
  6. 2012, http://www.journals.elsevier.com/journal-of-non-newtonian-fluid-mechanics/.
  7. B. Bernstein, E. A. Kearsley, and L. J. Zapas, “A study of stress relaxations with finite strain,” Transactions of The Society of Rheology, vol. 7, pp. 391–410, 1963. View at Publisher · View at Google Scholar
  8. A. Kaye, Non-Newtonian Flow in Incompressible Fluids, Note No. 134, College of Aeronautics, Cranfield, UK, 1962.
  9. R. I. Tanner, “From A to (BK)Z in constitutive relations,” Journal of Rheology, vol. 32, no. 7, pp. 673–702, 1988. View at Publisher · View at Google Scholar · View at Scopus
  10. 2012, http://sub3.webofknowledge.com.
  11. A. S. Lodge, “A network theory of flow birefringence and stress in concentrated polymer solutions,” Transactions of the Faraday Society, vol. 52, pp. 120–130, 1956. View at Scopus
  12. L. R. G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, New York, NY, USA, 2nd edition, 1958.
  13. C. Truesdell, “The mechanical foundations of elasticity and fluid mechanics,” Journal of Rational Mechanics and Analysis, vol. 2, pp. 125–300, 1952.
  14. C. Truesdell, “Two measures of vorticity,” Journal of Rational Mechanics and Analysis, vol. 3, pp. 593–616, 1953.
  15. B. Bernstein, E. Kearsley, and L. Zapas, “Elastic stress-strain relations in perfect elastic fluids,” Transactions of The Society of Rheology, vol. 9, pp. 27–39, 1965. View at Publisher · View at Google Scholar
  16. L. J. Zapas and T. Craft, “Correlation of large longitudinal deformations with different strain histories,” Journal of research of the National Bureau of Standards A, vol. 69, pp. 541–546, 1965.
  17. B. Bernstein, E. A. Kearsley, and L. J. Zapas, “Thermodynamics of perfect elastic fluids,” Journal of research of the National Bureau of Standards B, vol. 68, pp. 103–113, 1964.
  18. A. E. Green and R. S. Rivlin, “The mechanics of non-linear materials with memory,” Archive for Rational Mechanics and Analysis, vol. 1, pp. 1–21, 1957.
  19. W. Noll, “A mathematical theory of the mechanical behavior of continuous media,” Archive for Rational Mechanics and Analysis, vol. 2, no. 1, pp. 197–226, 1958. View at Publisher · View at Google Scholar · View at Scopus
  20. A. C. Pipkin, “Small finite deformations of viscoelastic solids,” Reviews of Modern Physics, vol. 36, no. 4, pp. 1034–1041, 1964. View at Publisher · View at Google Scholar · View at Scopus
  21. J. L. White and N. Tokita, “An additive functional theory of viscoelastic deformation with application to amorphous polymers, solutions and vulcanizates,” Journal of the Physical Society of Japan, vol. 22, no. 3, pp. 719–724, 1967. View at Scopus
  22. R. S. Rivlin and K. N. Sawyers, “Nonlinear continuum mechanics of viscoelastic fluids,” Annual Review of Fluid Mechanics, vol. 3, pp. 117–146, 1972. View at Scopus
  23. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, vol. 1 of Fluid Mechanics, John Wiley & Sons, New York, NY, USA, 2nd edition, 1987.
  24. R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, 1999.
  25. A. S. Lodge, Elastic Liquids, Academic Press, London, UK, 1964.
  26. J. Meissner, “Basic parameters, melt rheology, processing and end-use properties of three similar low density polyethylene samples,” Pure and Applied Chemistry, vol. 42, pp. 551–623, 1975. View at Publisher · View at Google Scholar
  27. M. H. Wagner, “Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt,” Rheologica Acta, vol. 15, no. 2, pp. 136–142, 1976. View at Publisher · View at Google Scholar · View at Scopus
  28. M. H. Wagner, T. Raible, and J. Meissner, “Tensile stress overshoot in uniaxial extension of a LDPE melt,” Rheologica Acta, vol. 18, no. 3, pp. 427–428, 1979. View at Publisher · View at Google Scholar · View at Scopus
  29. D. D. Joseph, International Symposium on Viscoelastic Fluids, Tobago, West Indies, 1994.
  30. A. C. Papanastasiou, L. E. Scriven, and C. W. Macosko, “Integral constitutive equation for mixed flows: viscoelastic characterization,” Journal of Rheology, vol. 27, no. 4, pp. 387–410, 1983. View at Publisher · View at Google Scholar · View at Scopus
  31. X. L. Luo and R. I. Tanner, “Finite element simulation of long and short circular die extrusion experiments using integral models,” International Journal for Numerical Methods in Engineering, vol. 25, pp. 9–22, 1988.
  32. M. H. Wagner, “Elongational behaviour of polymer melts in constant elongation-rate, constant tensile stress, and constant tensile force experiments,” Rheologica Acta, vol. 18, no. 6, pp. 681–692, 1979. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Olley, “An adaptation of the separable KBKZ equation for comparable response in planar and axisymmetric flow,” Journal of Non-Newtonian Fluid Mechanics, vol. 95, no. 1, pp. 35–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Doi and S. F. Edwards, Theory of Polymer Dynamics, Oxford University Press, 1986.
  35. M. Doi and S. F. Edwards, “Dynamics of concentrated polymer systems, Parts I-IV,” Journal of the Chemical Society, Faraday Transactions II, vol. 74, pp. 1789–1832, 1978. View at Publisher · View at Google Scholar
  36. M. Doi and S. F. Edwards, “Dynamics of concentrated polymer systems, Parts I-IV, J,” Journal of the Chemical Society, Faraday Transactions II, vol. 75, pp. 38–54, 1979. View at Publisher · View at Google Scholar
  37. C. F. Curtiss and R. Byron Bird, “A kinetic theory for polymer melts. II. The stress tensor and the rheological equation of state,” The Journal of Chemical Physics, vol. 74, no. 3, pp. 2026–2033, 1980. View at Scopus
  38. P. K. Currie, “Constitutive equations for polymer melts predicted by the Doi-Edwards and Curtiss-Bird kinetic theory models,” Journal of Non-Newtonian Fluid Mechanics, vol. 11, no. 1-2, pp. 53–68, 1982. View at Scopus
  39. D. W. Mead, R. G. Larson, and M. Doi, “A molecular theory for fast flows of entangled polymers,” Macromolecules, vol. 31, no. 22, pp. 7895–7914, 1998. View at Scopus
  40. T. C. B. McLeish and R. G. Larson, “Molecular constitutive equations for a class of branched polymers: the pom-pom polymer,” Journal of Rheology, vol. 42, no. 1, pp. 81–110, 1998. View at Scopus
  41. G. Ianniruberto and G. Marrucci, “A simple constitutive equation for entangled polymers with chain stretch,” Journal of Rheology, vol. 45, no. 6, pp. 1305–1318, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. M. H. Wagner, P. Rubio, and H. Bastian, “The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release,” Journal of Rheology, vol. 45, no. 6, pp. 1387–1412, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Hassager, J. M. R. Marin, K. Yu, and H. K. Rasmussen, “Polymeric liquids in extension: fluid mechanics or rheometry?” Rheologica Acta, vol. 49, no. 6, pp. 543–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. O. Hassager and R. Hansen, “Constitutive equations for the Doi-Edwards model without independent alignment,” Rheologica Acta, vol. 49, no. 6, pp. 555–562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Ansari, Th. Zisis, S. G. Hatzikiriakos, and E. Mitsoulis, “Capillary flow of low-density polyethylene,” Polymer Engineering & Science, vol. 52, pp. 649–662, 2012.
  46. M. Ansari, S. G. Hatzikiriakos, and E. Mitsoulis, “Slip Effects in HDPE Flows,” Journal of Non-Newtonian Fluid Mechanics, vol. 167-168, pp. 18–29, 2012. View at Publisher · View at Google Scholar
  47. T. Kajiwara, G. Barakos, and E. Mitsoulis, “Rheological characterization of polymer solutions and melts with an integral constitutive equation,” International Journal of Polymer Analysis and Characterization, vol. 1, pp. 201–215, 1995. View at Publisher · View at Google Scholar
  48. 2012, http://rheology.tripod.com/.
  49. M. Baumgaertel and H. H. Winter, “Determination of discrete relaxation and retardation time spectra from dynamic mechanical data,” Rheologica Acta, vol. 28, no. 6, pp. 511–519, 1989. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Tirtaatmadja and T. Sridhar, “A filament stretching device for measurement of extensional viscosity,” Journal of Rheology, vol. 37, pp. 1081–1102, 1993. View at Publisher · View at Google Scholar
  51. G. H. McKinley and T. Sridhar, “Filament-stretching rheometry of complex fluids,” Annual Review of Fluid Mechanics, vol. 34, pp. 375–415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. M. L. Sentmanat, “Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior,” Rheologica Acta, vol. 43, no. 6, pp. 657–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. D. G. Baird and D. I. Collias, Polymer Processing: Principles and Design, Butterworth-Heinemann, Boston, Mass, USA, 1995.
  54. X. L. Luo and R. I. Tanner, “A pseudo-time integral method for non-isothermal viscoelastic flows and its application to extrusion simulation,” Rheologica Acta, vol. 26, no. 6, pp. 499–507, 1987. View at Publisher · View at Google Scholar · View at Scopus
  55. S. M. Alaie and T. C. Papanastasiou, “Modeling of non-isothermal film blowing with integral constitutive equations,” International Polymer Processing, vol. 8, pp. 51–65, 1993.
  56. M. Beaulne and E. Mitsoulis, “Effect of viscoelasticity in the film-blowing process,” Journal of Applied Polymer Science, vol. 105, no. 4, pp. 2098–2112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. J. M. Dealy and K. F. Wissbrun, Melt Rheology and Its Role in Plastics Processing–Theory and Applications, Van Nostrand Reinhold, New York, NY, USA, 1990.
  58. H. M. Laun, “Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts,” Rheologica Acta, vol. 42, no. 4, pp. 295–308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Middleman, Fundamentals of Polymer Processing, McGraw-Hill, New York, NY, USA, 1977.
  60. H. H. Winter, “Viscous dissipation in shear flows of molten polymers,” Advances in Heat Transfer, vol. 13, no. C, pp. 205–267, 1977. View at Publisher · View at Google Scholar · View at Scopus
  61. S. G. Hatzikiriakos and J. M. Dealy, “Wall slip of molten high density polyethylenes. II. Capillary rheometer studies,” Journal of Rheology., vol. 36, pp. 703–741, 1992. View at Publisher · View at Google Scholar
  62. T. C. Papanastasiou, N. Malamataris, and K. Ellwood, “New outflow boundary condition,” International Journal for Numerical Methods in Fluids, vol. 14, no. 5, pp. 587–608, 1992. View at Scopus
  63. E. Mitsoulis, R. Wagner, and F. L. Heng, “Numerical simulation of wire-coating low-density polyethylene: theory and experiments,” Polymer Engineering and Science, vol. 28, no. 5, pp. 291–310, 1988. View at Scopus
  64. M. Viriyayuthakorn and B. Caswell, “Finite element simulation of viscoelastic flow,” Journal of Non-Newtonian Fluid Mechanics, vol. 6, no. 3-4, pp. 245–267, 1980. View at Scopus
  65. R. Keunings, “Finite element methods for integral viscoelastic fluids,” in Rheology Reviews, D. Binding and K. Walters, Eds., pp. 167–195, British Society of Rheology, 2003.
  66. A. C. Papanastasiou, L. E. Scriven, and C. W. Macosko, “A finite element method for liquid with memory,” Journal of Non-Newtonian Fluid Mechanics, vol. 22, no. 3, pp. 271–288, 1987. View at Scopus
  67. S. Dupont, J. M. Marchal, and M. J. Crochet, “Finite element simulation of viscoelastic fluids of the integral type,” Journal of Non-Newtonian Fluid Mechanics, vol. 17, no. 2, pp. 157–183, 1985. View at Scopus
  68. S. Dupont and M. J. Crochet, “The vortex growth of a K.B.K.Z. fluid in an abrupt contraction,” Journal of Non-Newtonian Fluid Mechanics, vol. 29, pp. 81–91, 1988. View at Scopus
  69. X. L. Luo and R. I. Tanner, “A streamline element scheme for solving viscoelastic flowproblems part II: integral constitutive models,” Journal of Non-Newtonian Fluid Mechanics, vol. 22, no. 1, pp. 61–89, 1986. View at Scopus
  70. X. L. Luo and E. Mitsoulis, “An efficient algorithm for strain history tracking in finite element computations of non-newtonian fluids with integral constitutive equations,” in International Journal for Numerical Methods in Fluids, vol. 11, pp. 1015–1031, 1990. View at Publisher · View at Google Scholar
  71. X. L. Luo and E. Mitsoulis, “A numerical study of the effect of elongational viscosity on vortex growth in contraction flows of polyethylene melts,” in Journal of Rheology, vol. 34, pp. 309–342, 1990. View at Publisher · View at Google Scholar
  72. B. Bernstein, K. A. Feigl, and E. T. Olsen, “Steady flows of viscoelastic fluids in axisymmetric abrupt contraction geometry: a comparison of numerical results,” Journal of Rheology, vol. 38, no. 1, pp. 53–71, 1994. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Feigl and H. C. Ottinger, “Flow of a LDPE melt through an axisymmetric contraction: a numerical study and comparison to experimental results,” Journal of Rheology, vol. 38, no. 4, pp. 847–874, 1994. View at Publisher · View at Google Scholar · View at Scopus
  74. O. Hassager and C. Bisgaard, “A Lagrangian finite element method for the simulation of flow of non-newtonian liquids,” Journal of Non-Newtonian Fluid Mechanics, vol. 12, no. 2, pp. 153–164, 1983. View at Scopus
  75. H. K. Rasmussen and O. Hassager, “Simulation of transient viscoelastic flow,” Journal of Non-Newtonian Fluid Mechanics, vol. 46, no. 2-3, pp. 289–305, 1993. View at Scopus
  76. H. K. Rasmussen and O. Hassager, “Simulation of transient viscoelastic flow with second order time integration,” Journal of Non-Newtonian Fluid Mechanics, vol. 56, no. 1, pp. 65–84, 1995. View at Scopus
  77. H. K. Rasmussen, “Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models,” Journal of Non-Newtonian Fluid Mechanics, vol. 84, no. 2-3, pp. 217–232, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. H. K. Rasmussen, “Lagrangian viscoelastic flow computations using the Rivlin-Sawyers constitutive model,” Journal of Non-Newtonian Fluid Mechanics, vol. 92, no. 2-3, pp. 227–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. E. A. J. F. Peters, M. A. Hulsen, and B. H. A. A. Van Den Brule, “Instationary eulerian viscoelastic flow simulations using time separable Rivlin-Sawyers constitutive equations,” Journal of Non-Newtonian Fluid Mechanics, vol. 89, no. 1-2, pp. 209–228, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. M. J. Crochet, A. R. Davies, and K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier, Amsterdam, The Netherlands, 1984.
  81. R. Keunings, “Simulation of viscoelastic fluid flow,” in Fundamentals of Computer Modelling for Polymer Processing, C. L. Tucker, Ed., pp. 404–469, Hanser Publishers, Munich, Germany, 1989.
  82. M. G. N. Perera and K. Walters, “Long-range memory effects in flows involving abrupt changes in geometry. Part I: flows associated with I-shaped and T-shaped geometries,” Journal of Non-Newtonian Fluid Mechanics, vol. 2, no. 1, pp. 49–81, 1977. View at Scopus
  83. R. Keunings, “On the high Weissenberg number problem,” Journal of Non-Newtonian Fluid Mechanics, vol. 20, pp. 209–226, 1986. View at Scopus
  84. J. Sun, N. Phan-Thien, and R. I. Tanner, “An adaptive viscoelastic stress splitting scheme and its applications: AVSS/SI and AVSS/SUPG,” Journal of Non-Newtonian Fluid Mechanics, vol. 65, no. 1, pp. 75–91, 1996. View at Publisher · View at Google Scholar · View at Scopus
  85. D. S. Malkus and B. Bernstein, “Flow of a curtiss-bird fluid over a transverse slot using the finite element drift-function method,” Journal of Non-Newtonian Fluid Mechanics, vol. 16, no. 1-2, pp. 77–116, 1984. View at Scopus
  86. B. Bernstein, D. S. Malkus, and E. T. Olsen, “A finite element for incompressible plane flows of fluids with memory,” International Journal for Numerical Methods in Fluids, vol. 5, no. 1, pp. 43–70, 1985. View at Scopus
  87. A. Goublomme, B. Draily, and M. J. Crochet, “Numerical prediction of extrudate swell of a high-density polyethylene,” Journal of Non-Newtonian Fluid Mechanics, vol. 44, pp. 171–195, 1992. View at Scopus
  88. R. Aggarwal, R. Keunings, and F. X. Roux, “Simulation of the flow of integral viscoelastic fluids on a distributed memory parallel computer,” Journal of Rheology, vol. 38, no. 2, pp. 405–419, 1994. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Henriksen and R. Keunings, “Parallel computation of the flow of integral viscoelastic fluids on a heterogeneous network of workstations,” International Journal for Numerical Methods in Fluids, vol. 18, no. 12, pp. 1167–1183, 1994. View at Scopus
  90. J. M. Marchal and M. J. Crochet, “A new mixed finite element for calculating viscoelastic flow,” Journal of Non-Newtonian Fluid Mechanics, vol. 26, no. 1, pp. 77–114, 1987. View at Scopus
  91. E. Mitsoulis, “Computational polymer processing,” in Modeling and Simulation in Polymers, P. D. Gujrati and A. I. Leonov, Eds., Chapter 4, pp. 127–195, Wiley-VCH, Weinheim, Germany, 2010.
  92. G. Barakos and E. Mitsoulis, “Numerical simulation of extrusion through orifice dies and prediction of Bagley correction for an IUPAC-LDPE melt,” Journal of Rheology, vol. 39, no. 1, pp. 193–209, 1995. View at Publisher · View at Google Scholar · View at Scopus
  93. R. G. Owens and T. N. Phillips, Computational Rheology, Imperial College Press, London, UK, 2002.
  94. E. B. Bagley and A. M. Birks, “Flow of polyethylene into a capillary,” Journal of Applied Physics, vol. 31, no. 3, pp. 556–561, 1960. View at Publisher · View at Google Scholar · View at Scopus
  95. E. Mitsoulis, “Effect of viscoelasticity in fountain flow of polyethylene melts,” International Polymer Processing, vol. 24, pp. 439–451, 2009.
  96. F. N. Cogswell, “Measuring the extensional rheology of polymer melts,” Transactions of The Society of Rheology, vol. 16, no. 3, pp. 383–403, 1972. View at Scopus
  97. F. N. Cogswell, “Polymer melt rheology. A guide for industrial practice,” 1981. View at Scopus
  98. E. B. Bagley, “End corrections in the capillary flow of polyethylene,” Journal of Applied Physics, vol. 28, no. 5, article 624, 4 pages, 1957. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Dimakopoulos, J. Papaioannou, and J. Tsamopoulos, “Cavity growth in pressure sensitive adhesive materials: 3D finite element calculations,” in Proceedings of the XVIth International Congress on Rheology (ICR '12), J. Maia, I. Emri, and C. Gallegos, Eds., Lisbon, Portugal, August 2012.