About this Journal Submit a Manuscript Table of Contents
ISRN Psychiatry
Volume 2012 (2012), Article ID 596486, 8 pages
http://dx.doi.org/10.5402/2012/596486
Clinical Study

Clozapine Augments Delta, Theta, and Right Frontal EEG Alpha Power in Schizophrenic Patients

1Department of Psychiatry, McMaster University, Hamilton, ON, Canada L8S 4L8
2St. Joseph's Mountain Healthcare Services, 100 West 5th Street, Hamilton, ON, Canada L8N 3K7
3Department of Medicine, Queen's University, Kingston, ON, Canada K7L 4Z4
4QEEG Assessment Services Inc., Thornhill, ON, Canada L3T 4Z4
5Department of Psychiatry, Queen's University, Kingston, ON, Canada K7L 4Z4

Received 11 January 2012; Accepted 30 January 2012

Academic Editors: C. M. Beasley and R. Yoshimura

Copyright © 2012 D. MacCrimmon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Gloor, “Hans Berger and the discovery of the electroencephalogram,” Electroencephalography and Clinical Neurophysiology, vol. 28, supplement 1, pp. 1–36, 1969.
  2. E. R. John, L. S. Prichep, K. R. Alper et al., “Quantitative electrophysiological characteristics and subtyping of schizophrenia,” Biological Psychiatry, vol. 36, no. 12, pp. 801–826, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Nagase, Y. Okubo, and M. Toru, “Electroencephalography in schizophrenic patients: comparison between neuroleptic-naive state and after treatment,” Biological Psychiatry, vol. 40, no. 6, pp. 452–456, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Harris, E. Gordon, J. Anderson, G. Ritchie, C. McLachlan, and R. Meares, “Change in quantified electroencephalography (QEEG) with medication and altered clinical state in the same subjects with schizophrenia,” Schizophrenia Research, vol. 23, no. 1, pp. 87–89, 1997. View at Scopus
  5. J. M. Davis, N. Chen, and I. D. Glick, “A meta-analysis of the efficacy of second-generation antipsychotics,” Archives of General Psychiatry, vol. 60, no. 6, pp. 553–564, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. G. Small, V. Milstein, I. F. Small, et al., “Computerized EEG profiles of haloperidol, chlorpromazine, clozapine and placebo in treatment resistant schizophrenia,” Clinical EEG Electroencephalography, vol. 18, no. 3, pp. 124–135, 1987.
  7. J. G. Small, V. Milstein, I. F. Small et al., “EEG topography in psychiatric diagnosis and drug treatment,” Annals of Clinical Psychiatry, vol. 1, no. 1, pp. 7–17, 1989. View at Scopus
  8. S. Galderisi, A. Mucci, P. Bucci, M. L. Mignone, and M. Maj, “Multilead quantitative EEG profile of clozapine in resting and vigilance-controlled conditions,” Psychiatry Research, vol. 67, no. 2, pp. 113–122, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Lacroix, Y. Chaput, J. P. Rodriguez et al., “Quantified EEG changes associated with a positive clinical response to clozapine in schizophrenia,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 19, no. 5, pp. 861–876, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Jin, S. G. Potkin, C. A. Sandman, and W. E. Bunney Jr., “Topographic analysis of EEG photic driving in patients with schizophrenia following clozapine treatment,” Clinical EEG Electroencephalography, vol. 29, no. 2, pp. 73–78, 1998. View at Scopus
  11. S. L. Joutsiniemi, A. Gross, and B. Appelberg, “Marked clozapine-induced slowing of EEG background over frontal, central, and parietal scalp areas in schizophrenic patients,” Journal of Clinical Neurophysiology, vol. 18, no. 1, pp. 9–13, 2001. View at Scopus
  12. V. Knott, A. Labelle, B. Jones, and C. Mahoney, “Quantitative EEG in schizophrenia and in response to acute and chronic clozapine treatment,” Schizophrenia Research, vol. 50, no. 1-2, pp. 41–53, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. S. Lawson, S. J. Adams, D. G. Brunet, M. Criollo, H. Galin, and D. J. MacCrimmon, “Do QEEG topographic map data have a multivariate normal distribution? Implications for tests of individual maps,” Brain Topography, vol. 10, no. 3, pp. 211–219, 1998. View at Scopus
  14. J. M. Kane, G. Honigfeld, J. Singer, and H. Y. Meltzer, “Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine,” Archives of General Psychiatry, vol. 45, no. 9, pp. 789–796, 1988.
  15. P. Lancaster and K. Salkauskas, Curves and Surface Fitting: An Introduction London, Academic Press, Orlando, Fla, USA, 1986.
  16. J. S. Lawson, S. J. Adams, D. G. Brunet, et al., “Quantified electroencephalogram topographic maps: an inferential statistical model for testing individual maps against a database,” Electroencephalography and Clinical Neurophysiology, vol. 103, p. 114, 1997.
  17. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, New York, NY, USA, 1993.
  18. F. Bolsche, D. J. MacCrimmon, and S. Kropf, “The effect of laterality of stimulus presentation on auditory P300 topography in schizophrenia,” Journal of Psychiatry and Neuroscience, vol. 21, no. 2, pp. 83–88, 1996. View at Scopus
  19. E. M. Weiss, S. Golaszewski, F. M. Mottaghy et al., “Brain activation patterns during a selective attention test—a functional MRI study in healthy volunteers and patients with schizophrenia,” Psychiatry Research, vol. 123, no. 1, pp. 1–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. L. Copolov, M. L. Seal, P. Maruff et al., “Cortical activation associated with the experience of auditory hallucinations and perception of human speech in schizophrenia: a PET correlation study,” Psychiatry Research, vol. 122, no. 3, pp. 139–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Steriade, P. Gloor, R. R. Llinas, F. H. Lopes de Silva, and M. M. Mesulam, “Basic mechanisms of cerebral rhythmic activities,” Electroencephalography and Clinical Neurophysiology, vol. 76, no. 6, pp. 481–508, 1990.
  22. C. L. Larson, R. J. Davidson, H. C. Abercrombie et al., “Relations between PET-derived measures of thalamic glucose metabolism and EEG alpha power,” Psychophysiology, vol. 35, no. 2, pp. 162–169, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Danos, S. Guich, L. Abel, and M. S. Buchsbaum, “EEG alpha rhythm and glucose metabolic rate in the thalamus in schizophrenia,” Neuropsychobiology, vol. 43, no. 4, pp. 265–272, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Z. Chong, W. Costain, J. Marriott et al., “Differential display polymerase chain reaction reveals increased expression of striatal rat glia-derived nexin following chronic clozapine treatment,” Pharmacogenomics Journal, vol. 4, no. 6, pp. 379–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Dupin, F. Mailliet, C. Rocher, K. Kessal, M. Spedding, and T. M. Jay, “Common efficacy of psychotropic drugs in restoring stress-induced impairment of prefrontal plasticity,” Neurotoxicity Research, vol. 10, no. 3-4, pp. 193–198, 2006. View at Publisher · View at Google Scholar · View at Scopus