About this Journal Submit a Manuscript Table of Contents
ISRN Public Health
Volume 2012 (2012), Article ID 721329, 10 pages
http://dx.doi.org/10.5402/2012/721329
Research Article

Age Variance in the Survival of United States Pediatric Leukemia Patients (1973–2006)

1American Health Research Institute, Houston, TX 77008, USA
2Nemours Center for Childhood Cancer Research, Wilmington, DE 19803, USA
3Epidemiology and Biostatistics Section, Orthopedic Department, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
4University of Delaware, Newark, DE 19716, USA
5School of Rural Public Health, Texas A&M, Houston, TX 77030, USA
6Biomedical Research Department, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA

Received 23 January 2012; Accepted 20 March 2012

Academic Editors: E. Clays, J. Eyles, and C. Rissel

Copyright © 2012 L. Holmes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. N. Sather, “Age at diagnosis in childhood acute lymphoblastic leukemia,” Medical and Pediatric Oncology, vol. 14, no. 3, pp. 166–172, 1986. View at Scopus
  2. D. K. H. Webb, G. Harrison, R. F. Stevens, B. G. Gibson, I. M. Hann, and K. Wheatley, “Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia,” Blood, vol. 98, no. 6, pp. 1714–1720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. B. I. Razzouk, E. Estey, S. Pounds et al., “Impact of age on outcome of pediatric acute myeloid leukemia: a report from 2 institutions,” Cancer, vol. 106, no. 11, pp. 2495–2502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. NCI, “SEER Cancer statistics Review 1975–2006,” NCI, 2010, http://seer.cancer.gov/csr/1975_2006/index.html.
  5. U. Creutzig, T. Büchner, M. C. Sauerland et al., “Significance of age in acute myeloid leukemia patients younger than 30 years: a common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A,” Cancer, vol. 112, no. 3, pp. 562–571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. B. J. Lange, F. O. Smith, J. Feusner et al., “Outcomes in CCG-2961, a Children's Oncology Group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the Children's Oncology Group,” Blood, vol. 111, no. 3, pp. 1044–1053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Trueworthy, J. Shuster, T. Look et al., “Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study,” Journal of Clinical Oncology, vol. 10, no. 4, pp. 606–613, 1992. View at Scopus
  8. J. E. Rubnitz, M. P. Link, J. J. Shuster et al., “Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study,” Blood, vol. 84, no. 2, pp. 570–573, 1994. View at Scopus
  9. J. M. Hilden, J. L. Frestedt, R. O. Moore et al., “Molecular analysis of infant acute lymphoblastic leukemia: MLL gene rearrangement and reverse transcriptase-polymerase chain reaction for t(4;11)(q21;q23),” Blood, vol. 86, no. 10, pp. 3876–3882, 1995. View at Scopus
  10. J. E. Rubnitz, J. J. Shuster, V. J. Land et al., “Case-control study suggests a favorable impact of TEL rearrangement in patients with B-lineage acute lymphoblastic leukemia treated with antimetabolite-based therapy: a Pediatric Oncology Group study,” Blood, vol. 89, no. 4, pp. 1143–1146, 1997. View at Scopus
  11. G. Reaman, P. Zeltzer, and W. A. Bleyer, “Acute lymphoblastic leukemia in infants less than one year of age: a cumulative experience of the Childrens Cancer Study Group,” Journal of Clinical Oncology, vol. 3, no. 11, pp. 1513–1521, 1985. View at Scopus
  12. A. Arican, N. Ozbek, V. Baltaci, and M. Haberal, “Philadelphia chromosome(+) T-cell acute lymphoblastic leukaemia after renal transplantation,” Nephrology Dialysis Transplantation, vol. 14, no. 8, pp. 2054–2055, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Rubnitz, J. R. Downing, C. H. Pui et al., “TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance,” Journal of Clinical Oncology, vol. 15, no. 3, pp. 1150–1157, 1997. View at Scopus
  14. C. M. Niemeyer, M. Arico, G. Basso, et al., “Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS),” Blood, vol. 89, no. 10, pp. 3534–3543, 1997.
  15. S. J. Passmore, J. M. Chessells, H. Kempski, I. M. Hann, P. A. Brownbill, and C. A. Stiller, “Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival,” British Journal of Haematology, vol. 121, no. 5, pp. 758–767, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. B. J. Lange, N. Kobrinsky, D. R. Barnard et al., “Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891,” Blood, vol. 91, no. 2, pp. 608–615, 1998. View at Scopus
  17. U. Creutzig, D. Reinhardt, S. Diekamp, M. Dworzak, J. Stary, and M. Zimmermann, “AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity,” Leukemia, vol. 19, no. 8, pp. 1355–1360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. S. Gamis, W. G. Woods, T. A. Alonzo et al., “Increased age at diagnosis has a significantly negative effect on outcome in children with Down syndrome and acute myeloid leukemia: a report from the Children's Cancer Group study 2891,” Journal of Clinical Oncology, vol. 21, no. 18, pp. 3415–3422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. NCI, “Surveillance, epidemiology and end results (SEER) program web site, data quality,” 2010, http: //seer.cancer.gov/about/quality.html.
  20. X. Du, J. L. Freeman, and J. S. Goodwin, “Information on radiation treatment in patients with breast cancer: the advantages of the linked Medicare and SEER data,” Journal of Clinical Epidemiology, vol. 52, no. 5, pp. 463–470, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. “Ped-Onc resource center,” 2010, http://www.acor.org/ped-onc/diseases/leuk.html.
  22. S. H. E. Kaufmann, R. Meclzhitov, and S. Gordon, The Innate Immune Response to Infection, ASM Press, Washington, DC, USA, 2004.
  23. J. Brostoff, A. Gray, D. K. Male, and I. M. Roitt, Case Studies in Immunology: Companion to Immunology, 5th edition, 1998.
  24. C. H. Pui, F. G. Behm, and W. M. Crist, “Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia,” Blood, vol. 82, no. 2, pp. 343–362, 1993. View at Scopus
  25. B. H. Pollock, M. R. Debaun, B. M. Camitta et al., “Racial differences in the survival of childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group study,” Journal of Clinical Oncology, vol. 18, no. 4, pp. 813–823, 2000. View at Scopus
  26. J. J. Shuster, P. Wacker, J. Pullen et al., “Prognostic significance of sex in childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group study,” Journal of Clinical Oncology, vol. 16, no. 8, pp. 2854–2863, 1998. View at Scopus
  27. N. S. Kadan-Lottick, K. K. Ness, S. Bhatia, and J. G. Gurney, “Survival variability by race and ethnicity in childhood acute lymphoblastic leukemia,” Journal of the American Medical Association, vol. 290, no. 15, pp. 2008–2014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Bhatia, H. Sather, J. Zhang, M. Trigg, P. Gaynon, and L. Robison, “Ethnicity and survival following childhood acute lymphoblastic leukemia (ALL): follow-up of the Children's Cancer Group (CCG) cohort,” in Proceedings of the American Society of Clinical Oncology (ASCO '99), vol. 18, Abstract no. 2190, 1999.
  29. MRC, “Report to the Medical Research Council by the Working Party on Leukemia in childhood: effects of varying radiation schedule, cyclophosphamide treatment, and duration of treatment in acute lymphoblastic leukemia,” British Medical Journal, vol. 2, no. 6140, pp. 787–791, 1978. View at Scopus
  30. H. Sather, D. Miller, and M. Nesbit, “Differences in prognosis for boys and girls with acute lymphoblastic leukaemia,” The Lancet, vol. 1, no. 8223, pp. 739–743, 1981. View at Scopus
  31. M. Lanning, S. Garwicz, H. Hertz et al., “Superior treatment results in females with high-risk acute lymphoblastic leukemia in childhood,” Acta Paediatrica, vol. 81, no. 1, pp. 66–68, 1992. View at Scopus
  32. M. E. Nesbit Jr., H. N. Sather, and L. L. Robison, “Randomized study of 3 years versus 5 years of chemotherapy in childhood acute lymphoblastic leukemia,” Journal of Clinical Oncology, vol. 1, no. 5, pp. 308–316, 1983. View at Scopus
  33. A. Reiter, M. Schrappe, W. D. Ludwig et al., “Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86,” Blood, vol. 84, no. 9, pp. 3122–3133, 1994. View at Scopus
  34. MRC, “The Medical Research Council's working party on leukemia in childhood: duration of chemotherapy in childhood acute lymphoblastic leukemia,” Medical and Pediatric Oncology, vol. 10, pp. 511–520, 1982.
  35. P. Imbach, A. Fuchs, W. Berchtold et al., “Boys but not girls with T-lineage acute lymphocytic leukemia (ALL) are different from children with B-progenitor ALL: population-based data results of initial prognostic factors and long-term event-free survival,” Journal of Pediatric Hematology/Oncology, vol. 17, no. 4, pp. 346–349, 1995. View at Scopus
  36. J. M. Chessells, S. M. Richards, C. C. Bailey, J. S. Lilleyman, and O. B. Eden, “Gender and treatment outcome in childhood lymphoblastic leukaemia: report from the MRC UKALL trials,” British Journal of Haematology, vol. 89, no. 2, pp. 364–372, 1995. View at Scopus
  37. G. Gustafsson and A. Kreuger, “Sex and other prognostic factors in acute lymphoblastic leukemia in childhood,” American Journal of Pediatric Hematology/Oncology, vol. 5, no. 3, pp. 243–250, 1983. View at Scopus
  38. A. S. Smith, et al., “Leukemia, SEER pediatric monograph, 1975–1995,” http://seer.cancer.gov/publications/childhood/leukemia.pdf.
  39. C. H. Pui, J. M. Boyett, M. V. Relling et al., “Sex differences in prognosis for children with acute lymphoblastic leukemia,” Journal of Clinical Oncology, vol. 17, no. 3, pp. 818–824, 1999. View at Scopus
  40. R. Marcos-Gragera, C. Allemani, C. Tereanu et al., “Survival of European patients diagnosed with lymphoid neoplasms in 2000–2002: results of the HAEMACARE project,” Haematologica, vol. 96, no. 5, pp. 720–728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Xie, S. M. Davies, Y. Xiang, L. L. Robison, and J. A. Ross, “Trends in leukemia incidence and survival in the United States (1973–1998),” Cancer, vol. 97, no. 9, pp. 2229–2235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. G. M. Dores, S. S. Devesa, R. E. Curtis, M. S. Linet, and L. M. Morton, “Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007,” Blood, vol. 119, no. 1, pp. 34–43, 2012.
  43. L. Holmes Jr., J. Hossain, M. Desvignes-Kendrick, and F. Opara, “Sex variability in pediatric leukemia survival: large cohort evidence,” ISRN Oncology, vol. 2012, article 439070, 2012.