About this Journal Submit a Manuscript Table of Contents
ISRN Rehabilitation
Volume 2013 (2013), Article ID 157410, 5 pages
http://dx.doi.org/10.1155/2013/157410
Research Article

Metronome-Cued Stepping in Place after Hemiparetic Stroke: Comparison of a One- and Two-Tone Beat

1School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
2West Midlands Rehabilitation Centre, Birmingham Community Healthcare Trust, Birmingham B29 6HZ, UK
3School of Allied Health Professions, University of East Anglia, Norwich NR4 7TJ, UK

Received 30 August 2013; Accepted 24 September 2013

Academic Editors: G. N. Lewis and C. I. Renner

Copyright © 2013 Rachel L. Wright et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Olney and C. Richards, “Hemiparetic gait following stroke. Part I: characteristics,” Gait & Posture, vol. 4, no. 2, pp. 136–148, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. C. K. Balasubramanian, R. R. Neptune, and S. A. Kautz, “Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke,” Gait & Posture, vol. 29, no. 3, pp. 408–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Hsu, P. F. Tang, and M. H. Jan, “Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 8, pp. 1185–1193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Chen, C. Patten, D. H. Kothari, and F. E. Zajac, “Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds,” Gait & Posture, vol. 22, no. 1, pp. 51–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. L. Richards, F. Malouin, S. Wood-Dauphinee, J. I. Williams, J. P. Bouchard, and D. Brunet, “Task-specific physical therapy for optimization of gait recovery in acute stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 74, no. 6, pp. 612–620, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. K. K. Patterson, I. Parafianowicz, C. J. Danells et al., “Gait asymmetry in community-ambulating stroke survivors,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 2, pp. 304–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. Thaut, G. C. McIntosh, and R. R. Rice, “Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation,” Journal of the Neurological Sciences, vol. 151, no. 2, pp. 207–212, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. K. K. Patterson, W. H. Gage, D. Brooks, S. E. Black, and W. E. McIlroy, “Changes in gait symmetry and velocity after stroke: a cross-sectional study from weeks to years after stroke,” Neurorehabilitation and Neural Repair, vol. 24, no. 9, pp. 783–790, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. C. Norvell, J. M. Czerniecki, G. E. Reiber, C. Maynard, J. A. Pecoraro, and N. S. Weiss, “The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 3, pp. 487–493, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Nolan, A. Wit, K. Dudziñski, A. Lees, M. Lake, and M. Wychowañski, “Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees,” Gait & Posture, vol. 17, pp. 142–151, 2003. View at Publisher · View at Google Scholar
  11. J. M. Hausdorff, D. A. Rios, and H. K. Edelberg, “Gait variability and fall risk in community-living older adults: a 1-year prospective study,” Archives of Physical Medicine and Rehabilitation, vol. 82, no. 8, pp. 1050–1056, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Lewek, C. E. Bradley, C. J. Wutzke, and S. M. Zinder, “The relationship between spatiotemporal gait asymmetry and balance in individuals with chronic stroke,” Journal of Applied Biomechanics. In press.
  13. M. L. Callisaya, L. Blizzard, M. D. Schmidt et al., “Gait, gait variability and the risk of multiple incident falls in older people: a population-based study,” Age and Ageing, vol. 40, no. 4, pp. 481–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Roerdink, C. J. C. Lamoth, G. Kwakkel, P. C. W. van Wieringen, and P. J. Beek, “Gait coordination after stroke: benefits of acoustically paced treadmill walking,” Physical Therapy, vol. 87, no. 8, pp. 1009–1022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. Thaut, A. K. Leins, R. R. Rice et al., “Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial,” Neurorehabilitation and Neural Repair, vol. 21, no. 5, pp. 455–459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. T. A. Pelton, L. Johannsen, H. Y. Chen, and A. M. Wing, “Hemiparetic stepping to the beat: asymmetric response to metronome phase shift during treadmill gait,” Neurorehabilitation and Neural Repair, vol. 24, no. 5, pp. 428–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. H. Thaut, G. C. McIntosh, S. G. Prassas, and R. R. Rice, “Effect of rhythmic auditory cuing on temporal stride parameters and EMG. Patterns in hemiparetic gait of stroke patients,” Neurorehabilitation and Neural Repair, vol. 7, pp. 9–16, 1993.
  18. M. Roerdink, C. J. C. Lamoth, J. van Kordelaar et al., “Rhythm perturbations in acoustically paced treadmill walking after stroke,” Neurorehabilitation and Neural Repair, vol. 23, no. 7, pp. 668–678, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Roerdink, P. J. M. Bank, C. L. E. Peper, and P. J. Beek, “Walking to the beat of different drums: practical implications for the use of acoustic rhythms in gait rehabilitation,” Gait & Posture, vol. 33, no. 4, pp. 690–694, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. R. K. Garcia, A. J. Nelson, W. Ling, and C. van Olden, “Comparing stepping-in-place and gait ability in adults with and without hemiplegia,” Archives of Physical Medicine and Rehabilitation, vol. 82, pp. 36–42, 2001. View at Publisher · View at Google Scholar
  21. F. M. Collen, D. T. Wade, G. F. Robb, and C. M. Bradshaw, “The Rivermead mobility index: a further development of the Rivermead motor assessment,” International Disability Studies, vol. 13, no. 2, pp. 50–54, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. M. T. Elliott, A. E. Welchman, and A. M. Wing, “MatTAP: a MATLAB toolbox for the control and analysis of movement synchronisation experiments,” Journal of Neuroscience Methods, vol. 177, no. 1, pp. 250–257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Podsiadlo and S. Richardson, “The timed “up and go”: a test of basic functional mobility for frail elderly persons,” Journal of the American Geriatrics Society, vol. 39, no. 2, pp. 142–148, 1991. View at Scopus
  24. S. S. Ng and C. W. Hui-Chan, “The timed up & go test: its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 8, pp. 1641–1647, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Lord, T. Howe, J. Greenland, L. Simpson, and L. Rochester, “Gait variability in older adults: a structured review of testing protocol and clinimetric properties,” Gait & Posture, vol. 34, no. 4, pp. 443–450, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Hausdorff, J. Lowenthal, T. Herman, L. Gruendlinger, C. Peretz, and N. Giladi, “Rhythmic auditory stimulation modulates gait variability in Parkinson's disease,” European Journal of Neuroscience, vol. 26, no. 8, pp. 2369–2375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Weerdesteyn, M. de Niet, H. J. R. van Duijnhoven, and A. C. H. Geurts, “Falls in individuals with stroke,” Journal of Rehabilitation Research and Development, vol. 45, no. 8, pp. 1195–1214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. P. J. Fitzgibbons, A. Pollatsek, and I. B. Thomas, “Detection of temporal gaps within and between perceptual tonal groups,” Perception & Psychophysics, vol. 16, no. 3, pp. 522–528, 1974. View at Scopus
  29. M. Gilat, J. M. Shine, S. J. Bolitho et al., “Variability of stepping during a virtual reality paradigm in Parkinson's disease patients with and without freezing of gait,” PLoS ONE, vol. 8, Article ID e66718, 2013. View at Publisher · View at Google Scholar
  30. C. E. Lang, J. R. MacDonald, D. S. Reisman et al., “Observation of amounts of movement practice provided during stroke rehabilitation,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 10, pp. 1692–1698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. A. Thorp, N. Owen, M. Neuhaus, and D. W. Dunstan, “Sedentary behaviors and subsequent health outcomes in adults: a systematic review of longitudinal studies, 1996–2011,” The American Journal of Preventive Medicine, vol. 41, no. 2, pp. 207–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. Moore, E. J. Roth, C. Killian, and T. G. Hornby, “Locomotor training improves daily stepping activity and gait efficiency in individuals poststroke who have reached a “plateau” in recovery,” Stroke, vol. 41, no. 1, pp. 129–135, 2010. View at Publisher · View at Google Scholar · View at Scopus