About this Journal Submit a Manuscript Table of Contents
ISRN Renewable Energy
Volume 2012 (2012), Article ID 130782, 10 pages
http://dx.doi.org/10.5402/2012/130782
Research Article

Waste Cooking Oil Biodiesel Use in Two Off-Road Diesel Engines

1Department of Civil, Environmental and Architectural Engineering, University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
2Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
3Department of Chemical & Petroleum Engineering, University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
4Department of Mechanical Engineering, University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA

Received 13 August 2012; Accepted 11 September 2012

Academic Editors: E. R. Bandala and O. Ozgener

Copyright © 2012 Jing Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study examines the composition and combustion performance of biodiesel produced from waste cooking oil. Six fuel batches produced from waste oil used in dining-hall fryers were examined to determine their physical and chemical properties, including their elemental and fatty acid methyl ester composition. Oleic and linoleic methyl esters accounted for more than 70% of the fuel composition, while the oxygen content averaged 10.2% by weight. Exhaust emissions were monitored for 5–100% biodiesel blends using two off-road engines: a 2007 Yanmar diesel generator and a 1993 John Deere front mower. Increasing biodiesel content resulted in reduced emissions of partial combustion products from the diesel generator but a rise in NOx, with the greatest changes occurring between 5 and 20% biodiesel content. For the riding mower, biodiesel content up to 50% had little effect on emissions, while NOx and total hydrocarbon emissions decreased with 100% biodiesel. The difference in NOx emissions is attributed to the two different fuel injection control designs used in the two engines. These results indicate that the effects of biodiesel use on nonroad engine exhaust emissions may be substantially lower in older engines optimized for performance over emissions control.