About this Journal Submit a Manuscript Table of Contents
ISRN Renewable Energy
Volume 2012 (2012), Article ID 173753, 8 pages
http://dx.doi.org/10.5402/2012/173753
Review Article

Technoeconomic Assessment on Innovative Biofuel Technologies: The Case of Microalgae

1School of Sciences and Technology, University of Coimbra and INESCC, R. Antero de Quental, 199 3000-033 Coimbra, Portugal
2School of Economics, University of Coimbra and INESCC, Avenue Dias da Silva, 165 Room 207, 3004-512 Coimbra, Portugal

Received 2 April 2012; Accepted 28 May 2012

Academic Editors: E. R. Bandala, B. Chen, and K. T. Lee

Copyright © 2012 Lauro André Ribeiro and Patrícia Pereira da Silva. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. European Commission (EC)—SETIS Strategy Energy Technologies Information System, “Bioenergy,” http://setis.ec.europa.eu/technologies/Bioenergy/info, 2012.
  2. M. J. Groom, E. M. Gray, and P. A. Townsend, “Biofuels and biodiversity: principles for creating better policies for biofuel production,” Conservation Biology, vol. 22, no. 3, pp. 602–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Chisti, “Biodiesel from microalgae,” Biotechnology Advances, vol. 25, no. 3, pp. 294–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Oligae, Oligae Report Academic Edition, http://www.oligae.com/, 2010.
  5. L. Tao and A. Aden, “The economics of current and future biofuels,” In Vitro Cellular and Developmental Biology, vol. 45, no. 3, pp. 199–217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Brennan and P. Owende, “Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 2, pp. 557–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. P. Carvalho, L. A. Meireles, and F. X. Malcata, “Microalgal reactors: a review of enclosed system designs and performances,” Biotechnology Progress, vol. 22, no. 6, pp. 1490–1506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Hirano, R. Ueda, S. Hirayama, and Y. Ogushi, “CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation,” Energy, vol. 22, no. 2-3, pp. 137–142, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Ono and J. L. Cuello, “Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector,” Biosystems Engineering, vol. 95, no. 4, pp. 597–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Pulz, “Photobioreactors: production systems for phototrophic microorganisms,” Applied Microbiology and Biotechnology, vol. 57, no. 3, pp. 287–293, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Pulz and W. Gross, “Valuable products from biotechnology of microalgae,” Applied Microbiology and Biotechnology, vol. 65, no. 6, pp. 635–648, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, A Look Back at the U.S. Department of Energy's Aquatic Species Program—Biodiesel from Algae, National Renewable Energy Laboratory, Golden, Colo, USA, 1998.
  13. P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, “Commercial applications of microalgae,” Journal of Bioscience and Bioengineering, vol. 101, no. 2, pp. 87–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. L. Terry and L. P. Raymond, “System design for the autotrophic production of microalgae,” Enzyme and Microbial Technology, vol. 7, no. 10, pp. 474–487, 1985. View at Publisher · View at Google Scholar · View at Scopus
  15. C. U. Ugwu, H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae,” Bioresource Technology, vol. 99, no. 10, pp. 4021–4028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. M. Brown, “Uptake of carbon dioxide from flue gas by microalgae,” Energy Conversion and Management, vol. 37, no. 6–8, pp. 1363–1367, 1996. View at Scopus
  17. K. B. Cantrell, T. Ducey, K. S. Ro, and P. G. Hunt, “Livestock waste-to-bioenergy generation opportunities,” Bioresource Technology, vol. 99, no. 17, pp. 7941–7953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. UNESCO, “The ethics of adoption and development of algae-based biofuels,” UNESCO 83, McGraw-Hill, Bangkok, Thailand, 2009.
  19. P. T. Pienkos and A. Darzins, “The promise and challenges of microalgal-derived biofuels,” Biofuels, Bioproducts and Biorefining, vol. 3, no. 4, pp. 431–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Searchinger, R. Heimlich, R. A. Houghton et al., “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” Science, vol. 319, no. 5867, pp. 1238–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Rodolfi, G. C. Zittelli, N. Bassi et al., “Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor,” Biotechnology and Bioengineering, vol. 102, no. 1, pp. 100–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Qin, Bio-Hydrocarbons from Algae—Impacts of Temperature, Light and Salinity on Algae Growth, Rural Industries Research and Development, Barton, Australia, 2005.
  23. M. L. Ghirardi, L. Zhang, J. W. Lee et al., “Microalgae: a green source of renewable H2,” Trends in Biotechnology, vol. 18, no. 12, pp. 506–511, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. O. Pulz and K. Scheinbenbogan, “Photobioreactors: design and performance with respect to light energy input,” Advances in Biochemical Engineering/Biotechnology, vol. 59, pp. 123–152, 1998.
  25. P. Chen, M. Min, Y. Chen, et al., “Review of the biological and engineering aspects of algae to fuels approach,” International Journal of Agricultural and Biological Engineering, vol. 2, no. 4, pp. 1–30, 2009.
  26. J. R. Benemann, “Microalgal biofuels: a brief introduction,” 2009, http://advancedbiofuelsusa.info/wp-content/uploads/2009/03/microalgae-biofuels-an-introduction-july23-2009-benemann.pdf.
  27. A. L. Ahmad, N. H. M. Yasin, C. J. C. Derek, and J. K. Lim, “Microalgae as a sustainable energy source for biodiesel production?: a review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 584–593, 2011.
  28. J. Singh and S. Gu, “Commercialization potential of microalgae for biofuels production,” Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 2596–2610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Rothwell, Electricity Economics: Regulation and Deregulation, IEEE Press, New Jersey, NJ, USA, 2000.
  30. L. A. Ribeiro and P. P. Silva, “Policies and challenges for advanced biofuel technologies: a look into microalgae,” in Proceedings of the 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES '11), pp. 25–29, Dubrovnik, Croatia, September 2011.
  31. A. S. Humphrey, “History of the SWOT analysis,” http://rapidbi.wordpress.com/2008/12/29/history-of-the-swot-analysis/, 2004.
  32. M. Rosenthal, “Leveling the playing field for algae-based fuels,” March 2011, Biofuels Digest, http://www.biofuelsdigest.com/bdigest/2011/03/31/leveling-the-playing-field-for-algae-based-fuels/.
  33. BFS, “The world's first ecological oil is made using profitable industrial process?” BFS Blue Petroleum, http://www.biopetroleo.com/english/noticia/the-worlds-first-ecological-oil-is-made-using-profitable-industrial-processes/, 2011.