About this Journal Submit a Manuscript Table of Contents
ISRN Renewable Energy
Volume 2012 (2012), Article ID 541596, 6 pages
http://dx.doi.org/10.5402/2012/541596
Research Article

Thermofluidynamic Analysis of a Combustor Chamber Coupled to a Biomass Downdraft Gasifier

1Institute of Agricultural and Technological Science—Agricultural and Environmental Engineering, Federal University of Mato Grosso (UFMT), 78735-901 Rondonópolis, MT, Brazil
2Department of Agricultural Engineering, Federal University of Viçosa (UFV), 36570-000 Viçosa, MG, Brazil

Received 18 April 2012; Accepted 13 August 2012

Academic Editors: M. Beccali, A. Bosio, H. K. Ozturk, and A. C. Rastogi

Copyright © 2012 Jofran Luiz de Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Baratieri, P. Baggio, L. Fiori, and M. Grigiante, “Biomass as an energy source: thermodynamic constraints on the performance of the conversion process,” Bioresource Technology, vol. 99, no. 15, pp. 7063–7073, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Y. C. Leung, X. L. Yin, and C. Z. Wu, “A review on the development and commercialization of biomass gasification technologies in China,” Renewable and Sustainable Energy Reviews, vol. 8, no. 6, pp. 565–580, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Martin, J. N. Silva, I. F. F. Tinoco, A. C. Vieira, and F. L. Zannata, “Design and construction of a downdraft gasifier for biomass,” Engenharia na Agriculturav, vol. 14, pp. 238–249, 2006 (Portuguese).
  4. M. Berggren, E. Ljunggren, and F. Johnsson, “Biomass co-firing potentials for electricity generation in Poland-Matching supply and co-firing opportunities,” Biomass and Bioenergy, vol. 32, no. 9, pp. 865–879, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. F. L. Zanatta, J. N. Silva, I. F. F. Tinoco, D. Oliveira Filho, and S. Martin, “Evaluation of thermal comfort in poultry house heated by a biomass gasifier,” Engenharia na Agricultura, vol. 16, pp. 270–284, 2008 (Portuguese).
  6. W. R. Santos, J. N. Silva, D. Oliveira Filho, and M. A. Martins, “Control and evaluation of a set gasifier-combustor with co-current flow using eucalyptus wood as a fuel,” Engenharia na Agricultura, vol. 18, pp. 165–170, 2010 (Portuguese).
  7. M. Kiliç, “Flow and convective heat transfer in cylindrical reversed flow combustion chambers,” International Communications in Heat and Mass Transfer, vol. 23, no. 8, pp. 1151–1161, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Khoshhal, M. Rahimi, and A. A. Alsairafi, “CFD investigation on the effect of air temperature on air blowing cooling system for preventing tube rupture,” International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 750–756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Sreekanth, D. R. Sudhakar, B. V. S. S. S. Prasad, A. K. Kolar, and B. Leckner, “Modelling and experimental investigation of devolatilizing wood in a fluidized bed combustor,” Fuel, vol. 87, no. 12, pp. 2698–2712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Gungor, “Two-dimensional biomass combustion modeling of CFB,” Fuel, vol. 87, no. 8-9, pp. 1453–1468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. A. Osório, I. F. F. Tinoco, and M. O. Paula, “Modeling and experimental validation to estimate the energy balance for a broiler house with misting cooling,” Dyna, vol. 79, p. 10, 2011.
  12. F. A. Damasceno, F. C. Baeta, M. A. Martins, S. J. A. Osório, and S. J. A. I. Tinoco, “Computational fluid dynamics (CFD) and it's use for analysis gas distribution inside animal production facilities: a literature review,” Revista U.D.C.A Actualidad & Divulgación Científica, vol. 14, pp. 23–34, 2011.
  13. M. P. Anderson and W. W. Woessner, Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic Press, 2nd edition, 1992.
  14. A. H. A. Motlagh and S. H. Hashemabadi, “3D CFD simulation and experimental validation of particle-to-fluid heat transfer in a randomly packed bed of cylindrical particles,” International Communications in Heat and Mass Transfer, vol. 35, no. 9, pp. 1183–1189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974. View at Scopus