About this Journal Submit a Manuscript Table of Contents
ISRN Renewable Energy
Volume 2012 (2012), Article ID 682859, 8 pages
http://dx.doi.org/10.5402/2012/682859
Research Article

Blade Design Optimisation for Fixed-Pitch Fixed-Speed Wind Turbines

Wind Energy Engineering Research Group, School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE, UK

Received 7 April 2012; Accepted 4 July 2012

Academic Editors: A. Bosio, B. S. Hyun, and Z. A. Zainal

Copyright © 2012 Lin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Jureczko, M. Pawlak, and A. Mȩzyk, “Optimisation of wind turbine blades,” Journal of Materials Processing Technology, vol. 167, no. 2-3, pp. 463–471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. F. D. Bianchi, H. D. Battista, and R. J. Mantz, Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, Springer, London, UK, 2007.
  3. P. G. Pierce and K. G. Migliore, “Maximizing energy capture of fixed-pitch variable-speed wind turbines,” Tech. Rep. NREL/CP-500-27551, 2000.
  4. S. Li and T. A. Haskew, “Simulation study of fixed speed wind energy conversion system and compensation using PSpice,” in Proceedings of the International Conference on Power and Energy Systems (PES '07), vol. 539, January 2007. View at Scopus
  5. D. Saheb-Koussa, M. Haddadi, M. Belhamel, S. Hadji, and S. Nouredine, “Modeling and simulation of the fixed-speed WECS (wind energy conversion system): application to the Algerian Sahara area,” Energy, vol. 35, no. 10, pp. 4116–4125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. C. Venkatesh and S. V. Kulkarni, “Energy yield of passive stall regulated fixed speed wind turbine with optimal rotor speed,” Electric Power Systems Research, vol. 76, no. 12, pp. 1019–1026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zhang, A. Dyśko, J. O'Reilly, and W. E. Leithead, “Modelling and performance of fixed-speed induction generators in power system oscillation stability studies,” Electric Power Systems Research, vol. 78, no. 8, pp. 1416–1424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained: Theory, Design and Application, Wiley, New York, NY, USA, 2nd edition, 2009.
  9. A. Vardar and B. Eker, “Principle of rotor design for horizontal axis wind turbines,” Journal of Applied Sciences, vol. 6, no. 7, pp. 1527–1533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Bak, “Sensitivity of key parameters in aerodynamic wind turbine rotor design on power and energy performance,” Journal of Physics, vol. 75, no. 1, Article ID 012008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Thumthae and T. Chitsomboon, “Optimal angle of attack for untwisted blade wind turbine,” Renewable Energy, vol. 34, no. 5, pp. 1279–1284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. O. L. Hansena, J. N. Sorensena, S. Voutsinasb, and H. A. Madsenc, “State of the art in wind turbine aerodynamics and aeroelasticity,” Progress in Aerospace Sciences, vol. 42, pp. 285–330, 2006. View at Publisher · View at Google Scholar
  13. N. S. Çetin, M. A. Yurdusev, R. Ata, and A. Özdemir, “Assessment of optimum tip speed ratio of wind turbines,” Mathematical and Computational Applications, vol. 10, no. 1, pp. 147–154, 2005. View at Scopus
  14. M. A. Yurdusev, R. Ata, and N. S. Çetin, “Assessment of optimum tip speed ratio in wind turbines using artificial neural networks,” Energy, vol. 31, no. 12, pp. 2153–2161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. E. A. Bossanyi, “GH bladed theory manual,” Tech. Rep. 282/BR/009, 2008.
  16. E. Hau, Wind Turbines: Fundamentals, Technologies, Application, Economics, Springer, London, UK, 2nd edition, 2006.
  17. R. K. Singh, M. R. Ahmed, M. A. Zullah, and Y. H. Lee, “Design of a Low Reynolds number airfoil for small horizontal axis wind turbines,” Renewable Energy, vol. 42, pp. 66–76, 2011. View at Publisher · View at Google Scholar
  18. M. Drela, “XFOIL: an analysis and design system for Low Reynolds number airfoils,” in Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics, University of Notre Dame, June 1989.