About this Journal Submit a Manuscript Table of Contents
ISRN Rheumatology
Volume 2013 (2013), Article ID 460512, 12 pages
http://dx.doi.org/10.1155/2013/460512
Research Article

Modulation of Vitamin D Status and Dietary Calcium Affects Bone Mineral Density and Mineral Metabolism in Göttingen Minipigs

1Institute of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food-Kiel, 24103 Kiel, Germany
2Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food-Kiel, 24103 Kiel, Germany
3Medical Physics Research Group, Department of Diagnostic Radiology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
4The University of Connecticut Health Center, Farmington, CT 06030, USA
5Department of Osteopathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
6Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
7Department of Orthopaedics, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany

Received 22 May 2013; Accepted 1 July 2013

Academic Editors: J. L. Pérez-Castrillon and K. Uusi-Rasi

Copyright © 2013 Katharina E. Scholz-Ahrens et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Calcium and vitamin D deficiency impairs bone health and may cause rickets in children and osteomalacia in adults. Large animal models are useful to study experimental osteopathies and associated metabolic changes. We intended to modulate vitamin D status and induce nutritional osteomalacia in minipigs. The control group (n = 9) was fed a semisynthetic reference diet with 6 g calcium and 6,500 IU vitamin D3/kg and the experimental group (n = 10) the same diet but with only 2 g calcium/kg and without vitamin D. After 15 months, the deficient animals were in negative calcium balance, having lost bone mineral density significantly (means ± SEM) with −51.2 ± 14.7 mg/cm3 in contrast to controls (−2.3 ± 11.8 mg/cm3), whose calcium balance remained positive. Their osteoid surface was significantly higher, typical of osteomalacia. Their plasma 25(OH)D dropped significantly from 60.1 ± 11.4 nmol/L to 15.3 ± 3.4 nmol/L within 10 months, whereas that of the control group on the reference diet rose. Urinary phosphorus excretion and plasma 1,25-dihydroxyvitamin D concentrations were significantly higher and final plasma calcium significantly lower than in controls. We conclude that the minipig is a promising large animal model to induce nutritional osteomalacia and to study the time course of hypovitaminosis D and associated functional effects.