About this Journal Submit a Manuscript Table of Contents
ISRN Rheumatology
Volume 2013 (2013), Article ID 460512, 12 pages
http://dx.doi.org/10.1155/2013/460512
Research Article

Modulation of Vitamin D Status and Dietary Calcium Affects Bone Mineral Density and Mineral Metabolism in Göttingen Minipigs

1Institute of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food-Kiel, 24103 Kiel, Germany
2Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food-Kiel, 24103 Kiel, Germany
3Medical Physics Research Group, Department of Diagnostic Radiology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
4The University of Connecticut Health Center, Farmington, CT 06030, USA
5Department of Osteopathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
6Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
7Department of Orthopaedics, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany

Received 22 May 2013; Accepted 1 July 2013

Academic Editors: J. L. Pérez-Castrillon and K. Uusi-Rasi

Copyright © 2013 Katharina E. Scholz-Ahrens et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Institute of Medicine, Dietary Reference Intakes for Calcium and Vitamin D, National Academy Press, Washington, DC, USA, 2011, http://www.nap.edu/catalog/13050.html.
  2. P. Lips, “Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications,” Endocrine Reviews, vol. 22, no. 4, pp. 477–501, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. Scientific Advisory Committee on Nutrition, the Stationery Office, Update on Vitamin D, London, UK, 2007, http://www.sacn.gov.uk/pdfs/sacn_position_vitamin_d_2007_05_07.pdf.
  4. J. M. Pettifor, “Nutritional rickets: deficiency of vitamin D, calcium, or both?” The American Journal of Clinical Nutrition, vol. 80, supplement 6, pp. 1725S–1729S, 2004. View at Scopus
  5. H. A. Bischoff-Ferrari, E. Giovannucci, W. C. Willett, T. Dietrich, and B. Dawson-Hughes, “Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 18–28, 2006.
  6. M. F. Holick, “Resurrection of vitamin D deficiency and rickets,” Journal of Clinical Investigation, vol. 116, no. 8, pp. 2062–2072, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. E. Hansen, A. N. Jones, M. J. Lindstrom, L. A. Davis, J. A. Engelke, and M. M. Shafer, “Vitamin D insufficiency: disease or no disease?” Journal of Bone and Mineral Research, vol. 23, no. 7, pp. 1052–1060, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Lips, N. van Schoor, and N. Bravenboer, “Vitamin D-related disorders,” in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, C. Rosen, J. E. Compston, J. B. Lian, et al., Eds., pp. 329–335, American Society of Bone and Mineral Research, Washington, DC, USA, 7th edition, 2008.
  9. C. Gennari, “Calcium and vitamin D nutrition and bone disease of the elderly,” Public Health Nutrition, vol. 4, no. 2B, pp. 547–559, 2001. View at Scopus
  10. L. Mosekilde, “Assessing bone quality—animal models in preclinical osteoporosis research,” Bone, vol. 17, supplement 4, pp. 343S–352S, 1995. View at Scopus
  11. C. C. Glüer, K. E. Scholz-Ahrens, A. Helfenstein et al., “Ibandronate treatment reverses glucocorticoid-induced loss of bone mineral density and strength in minipigs,” Bone, vol. 40, no. 3, pp. 645–655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Pufe, H. Claassen, K. E. Scholz-Ahrens et al., “Influence of estradiol on vascular endothelial growth factor expression in bone: a study in Göttingen miniature pigs and human osteoblasts,” Calcified Tissue International, vol. 80, no. 3, pp. 184–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. K. E. Scholz-Ahrens, G. Delling, B. Stampa et al., “Glucocorticosteroid-induced osteoporosis in adult primiparous Göttingen miniature pigs: effects on bone mineral and mineral metabolism,” American Journal of Physiology, vol. 293, no. 1, pp. E385–E395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Hagemeister, K. E. Scholz-Ahrens, H. Schulte-Coerne, and C. A. Barth, “Plasma amino acids and cholesterol following consumption of dietary casein or soy protein in minipigs,” Journal of Nutrition, vol. 120, no. 11, pp. 1305–1311, 1990. View at Scopus
  15. D. Zillikens, F. P. Armbruster, J. Stern, H. Schmidt-Gayk, and F. Raue, “Sensitive homologous radioimmunoassay for human parathyroid hormone to diagnose hypoparathyroid conditions,” Annals of Clinical Biochemistry, vol. 24, no. 6, pp. 608–613, 1987. View at Scopus
  16. Y. Açil and P. K. Müller, “Rapid method for the isolation of the mature collagen crosslinks, hydroxylysylpyridinoline and lysylpyridinoline,” Journal of Chromatography A, vol. 664, no. 2, pp. 183–188, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. C.-C. Glüer, G. Blake, Y. Lu, B. A. Blunt, M. Jergas, and H. K. Genant, “Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques,” Osteoporosis International, vol. 5, no. 4, pp. 262–270, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Linde, I. Hvid, and F. Madsen, “The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens,” Journal of Biomechanics, vol. 25, no. 4, pp. 359–368, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Schormüller, Handbuch der Lebensmittelchemie IV, Springer, Berlin, Germany, 1969.
  20. M. Hahn, M. Vogel, and G. Delling, “Undecalcified preparation of bone tissue: report of technical experience and development of new methods,” Virchows Archiv A, vol. 418, no. 1, pp. 1–7, 1991. View at Scopus
  21. A. J. Reginato and J. A. Coquia, “Musculoskeletal manifestations of osteomalacia and rickets,” Best Practice and Research: Clinical Rheumatology, vol. 17, no. 6, pp. 1063–1080, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. DGE, ÖGE, SGE, and SVE, Eds., Referenzwerte für die Nährstoffzufuhr, 1. Auflage, 4. Korrigierter Nachdruck, Neuer Umschau Buchverlag Neustadt a. W., 2012.
  23. “Nutrition and bone health: with particular reference to calcium and vitamin D. Report of the Subgroup on Bone Health, Working Group on the Nutritional Status of the Population of the Committee on Medical Aspects of the Food Nutrition Policy,” Reports on Health and Social Subjects, vol. 49, pp. 1–24, 1998.
  24. M. F. Holick and T. C. Chen, “Vitamin D deficiency: a worldwide problem with health consequences,” American Journal of Clinical Nutrition, vol. 87, supplement 4, pp. 1080S–1086S, 2008. View at Scopus
  25. E. R. Miller and D. E. Ullrey, “The pig as a model for human nutrition,” Annual Review of Nutrition, vol. 7, pp. 361–382, 1987. View at Scopus
  26. K. E. Scholz-Ahrens and J. Schrezenmeir, “Effects of bioactive substances in milk on mineral and trace element metabolism with special reference to casein phosphopeptides,” British Journal of Nutrition, vol. 84, no. 1, pp. S147–S153, 2000. View at Scopus
  27. M. E. Tumbleson and L. B. Schook, Eds., Advances in Swine in Biomedical Research, vol. 1-2, Plenum Press, New York, NY, USA, 1996.
  28. R. L. Horst, J. L. Napoli, and E. T. Littledike, “Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, the rat and chick,” Biochemical Journal, vol. 204, no. 1, pp. 185–189, 1982. View at Scopus
  29. H. Claassen, C. Cellarius, K. E. Scholz-Ahrens et al., “Extracellular matrix changes in knee joint cartilage following bone-active drug treatment,” Cell and Tissue Research, vol. 324, no. 2, pp. 279–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Pufe, K. E. Scholz-Ahrens, A. T. M. Franke et al., “The role of vascular endothelial growth factor in glucocorticoid-induced bone loss: evaluation in a minipig model,” Bone, vol. 33, no. 6, pp. 869–876, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. K. E. Scholz-Ahrens, G. Delling, P. W. Jungblut, E. Kallweit, and C. A. Barth, “Effect of ovariectomy on bone histology and plasma parameters of bone metabolism in nulliparous and multiparous sows,” Zeitschrift für Ernährungswissenschaft, vol. 35, no. 1, pp. 13–21, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. EFSA, “Scientific opinion on safety and efficacy of 25-hydroxycholecalciferol as a feed additive for poultry and pigs,” The EFSA Journal, vol. 969, pp. 1–32, 2009.
  33. R. Vieth, “Vitamin D toxicity, policy, and science,” Journal of Bone and Mineral Research, vol. 22, no. 2, pp. V64–V68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. K. D. Cashman, J. M. W. Wallace, G. Horigan et al., “Estimation of the dietary requirement for vitamin D in free-living adults ≥64 y of age,” American Journal of Clinical Nutrition, vol. 89, no. 5, pp. 1366–1374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Chel, H. A. H. Wijnhoven, J. H. Smit, M. Ooms, and P. Lips, “Efficacy of different doses and time intervals of oral vitamin D supplementation with or without calcium in elderly nursing home residents,” Osteoporosis International, vol. 19, no. 5, pp. 663–671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Mocanu, P. A. Stitt, A. R. Costan et al., “Long-term effects of giving nursing home residents bread fortified with 125 μg (5000 IU) vitamin D3 per daily serving,” American Journal of Clinical Nutrition, vol. 89, no. 4, pp. 1132–1137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. O'Donnell, A. Cranney, T. Horsley et al., “Efficacy of food fortification on serum 25-hydroxyvitamin D concentrations: systematic review,” American Journal of Clinical Nutrition, vol. 88, no. 6, pp. 1528–1534, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Vieth, “Experimentally observed vitamin D requirements are higher than extrapolated ones,” American Journal of Clinical Nutrition, vol. 90, no. 4, pp. 1114–1115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. Smith, K. K. Gardner, J. Locke, and S. R. Zwart, “Vitamin D supplementation during Antarctic winter,” American Journal of Clinical Nutrition, vol. 89, no. 4, pp. 1092–1098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Janet Barger-Lux and R. P. Heaney, “Effects of above average summer sun exposure on serum 25-hydroxyvitamin D and calcium absorption,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 11, pp. 4952–4956, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. C. F. Garland, C. B. French, L. L. Baggerly, and R. P. Heaney, “Vitamin D supplement doses and serum 25-hydroxyvitamin D in the range associated with cancer prevention,” Anticancer Research, vol. 31, no. 2, pp. 607–612, 2011. View at Scopus
  42. J. N. Hathcock, A. Shao, R. Vieth, and R. Heaney, “Risk assessment for vitamin D,” American Journal of Clinical Nutrition, vol. 85, no. 1, pp. 6–18, 2007. View at Scopus
  43. R. P. Heaney, “Vitamin D: criteria for safety and efficacy,” Nutrition Reviews, vol. 66, no. 2, pp. S178–S181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Lips, R. Bouillon, N. M. Van Schoor et al., “Reducing fracture risk with calcium and vitamin D,” Clinical Endocrinology, vol. 73, no. 3, pp. 277–285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. B. Eastwood, H. E. De Wardener, R. W. Gray, and J. L. Lemann Jr., “Normal plasma-1,25-(OH)2-vitamin-D concentrations in nutritional osteomalacia,” The Lancet, vol. 1, no. 8131, pp. 1377–1378, 1979. View at Scopus
  46. A. G. Need and B. E. C. Nordin, “Misconceptions—vitamin D insufficiency causes malabsorption of calcium,” Bone, vol. 42, no. 6, pp. 1021–1024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Okonofua, D. S. Gill, Z. O. Alabi, M. Thomas, J. L. Bell, and P. Dandona, “Rickets in Nigerian children: a consequence of calcium malnutrition,” Metabolism, vol. 40, no. 2, pp. 209–213, 1991. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Bronner, “Recent developments in intestinal calcium absorption,” Nutrition Reviews, vol. 67, no. 2, pp. 109–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Davies, S. E. Heys, P. L. Selby, J. L. Berry, and E. B. Mawer, “Increased catabolism of 25-hydroxyvitamin D in patients with partial gastrectomy and elevated 1,25-dihydroxyvitamin D levels. Implications for metabolic bone disease,” The Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 1, pp. 209–212, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. T. D. Thacher, P. R. Fischer, M. O. Obadofin, M. A. Levine, R. J. Singh, and J. M. Pettifor, “Comparison of metabolism of vitamins D2 and D3 in children with nutritional rickets,” Journal of Bone and Mineral Research, vol. 25, no. 9, pp. 1988–1995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Peach, J. E. Compston, S. Vedi, and L. W. L. Horton, “Value of plasma calcium, phosphate, and alkaline phosphatase measurements in the diagnosis of histological osteomalacia,” Journal of Clinical Pathology, vol. 35, no. 6, pp. 625–630, 1982. View at Scopus
  52. C. Meier, M. J. Seibel, and M. E. Kraenzlin, “Use of bone turnover markers in the real world: are we there yet?” Journal of Bone and Mineral Research, vol. 24, no. 3, pp. 386–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. J. Pitt, “Rickets and osteomalacia are still around,” Radiologic Clinics of North America, vol. 29, no. 1, pp. 97–118, 1991. View at Scopus
  54. S. R. Peacey, “Routine biochemistry in suspected vitamin D deficiency,” Journal of the Royal Society of Medicine, vol. 97, no. 7, pp. 322–325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. M. P. Björkman, A. J. Sorva, J. Risteli, and R. S. Tilvis, “Low parathyroid hormone levels in bedridden geriatric patients with vitamin D deficiency,” Journal of the American Geriatrics Society, vol. 57, no. 6, pp. 1045–1050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. E. Scholz-Ahrens, C. C. Glüer, W. Timm, Y. Açil, W. Yan-Classen, and J. Schrezenmeir, “Goettingen minipigs—a model for Ca/Vit D-deficiency osteomalacia and steroid-induced osteoporosis,” Journal of Bone and Mineral Research, vol. 23, p. S217, 2008, abstract 445.
  57. H. Tsutsumi, K. Katagiri, M. Morimoto, T. Nasu, M. Tanigawa, and K. Mamba, “Diurnal variation and age-related changes of bone turnover markers in female Göttingen minipigs,” Laboratory Animals, vol. 38, no. 4, pp. 439–446, 2004. View at Publisher · View at Google Scholar · View at Scopus