About this Journal Submit a Manuscript Table of Contents
ISRN Rheumatology
Volume 2013 (2013), Article ID 850851, 6 pages
http://dx.doi.org/10.1155/2013/850851
Clinical Study

Stronger Correlation between Interleukin 18 and Soluble Fas in Lupus Nephritis Compared with Mild Lupus

1Rheumatology, Rheumatic Diseases Research Center (RDRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2Rheumatology, Rheumatology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
3Immunology, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Received 16 January 2013; Accepted 13 February 2013

Academic Editors: A. M. Huber, A. Spreafico, and A. Wong

Copyright © 2013 Mohammad Reza Hatef et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Saxena, T. Mahajan, and C. Mohan, “Lupus nephritis: current update,” Arthritis Research & Therapy, no. 13, article 240, 2011.
  2. F. A. Houssiau, C. Vasconcelos, D. D'Cruz et al., “Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide,” Arthritis & Rheumatism, vol. 46, no. 8, pp. 2121–2131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Alecu, G. Coman, and S. Alecu, “Serological levels of apoptotic bodies, sFAS and TNF in lupus erythematosus,” Romanian Journal of Internal Medicine, vol. 38, pp. 83–88, 2000. View at Scopus
  4. A. Gigante, M. L. Gasperini, A. Afeltra et al., “Cytokines expression in SLE nephritis,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 1, pp. 15–24, 2011. View at Scopus
  5. J. M. Kahlenberg, S. G. Thacker, C. C. Berthier, C. D. Cohen, M. Kretzler, and M. J. Kaplan, “Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus,” The Journal of Immunology, vol. 187, no. 11, pp. 6143–6156, 2011.
  6. K. Nozawa, N. Kayagaki, Y. Tokano, H. Yagita, K. Okumura, and H. Hasimoto, “Soluble Fas (APO-1, CD95) and soluble Fas ligand in rheumatic diseases,” Arthritis & Rheumatism, vol. 40, no. 6, pp. 1126–1129, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. L. E. Munoz, C. Van Bavel, S. Franz, J. Berden, M. Herrmann, and J. van der Vlag, “Apoptosis in the pathogenesis of systemic lupus erythematosus,” Lupus, vol. 17, no. 5, pp. 371–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Kitaura, M. Tatamiya, N. Nagata et al., “IL-18 induces apoptosis of adherent bone marrow cells in TNF-α mediated osteoclast formation in synergy with IL-12,” Immunology Letters, vol. 107, no. 1, pp. 22–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Ohtsuki, M. J. Micallef, K. Kohno, T. Tanimoto, M. Ikeda, and M. Kurimoto, “Interleukin 18 enhances Fas ligand expression and induces apoptosis in Fas-expressing human myelomonocytic KG-1 cells,” Anticancer Research, vol. 17, no. 5A, pp. 3253–3258, 1997. View at Scopus
  10. M. Bijl, G. Horst, P. C. Limburg, and C. G. M. Kallenberg, “Fas expression on peripheral blood lymphocytes in systemic lupus erythematosus (SLE): relation to lymphocyte activation and disease activity,” Lupus, vol. 10, no. 12, pp. 866–872, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Sahin, O. Aydintug, S. E. Tunc, H. Tutkak, and M. Naziroǧlu, “Serum soluble Fas levels in patients with autoimmune rheumatic diseases,” Clinical Biochemistry, vol. 40, no. 1-2, pp. 6–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Sahebari, M. R. Hatef, Z. Rezaieyazdi, M. Abbasi, B. Abbasi, and M. Mahmoudi, “Correlation between serum levels of soluble fas (CD95/Apo-1) with disease activity in systemic lupus erythematosus patients in Khorasan, Iran,” Archives of Iranian Medicine, vol. 13, no. 2, pp. 135–142, 2010. View at Scopus
  13. J. Cheng, T. Zhou, C. Liu et al., “Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule,” Science, vol. 263, no. 5154, pp. 1759–1762, 1994. View at Scopus
  14. F. Silvestris, D. Grinello, M. Tucci, P. Cafforio, and F. Dammacco, “Enhancement of T cell apoptosis correlates with increased serum levels of soluble Fas (CD95/Apo-I) in active lupus,” Lupus, vol. 12, no. 1, pp. 8–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Telegina, T. Reshetnyak, A. Moshnikova et al., “A possible role of Fas-ligand-mediated “reverse signaling” in pathogenesis of rheumatoid arthritis and systemic lupus erythematosus,” Immunology Letters, vol. 122, no. 1, pp. 12–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Silvestris, P. Cafforio, M. Tucci, A. del Prete, and F. Dammacco, “VEINCTR-N, an immunogenic epitope of Fas (CD95/Apo-I), and soluble Fas enhance T-cell apoptosis in vitro. II. Functional analysis and possible implications in HIV-1 disease,” Molecular Medicine, vol. 6, no. 6, pp. 509–526, 2000. View at Scopus
  17. H. P. Carroll, V. Paunović, and M. Gadina, “Signalling, inflammation and arthritis: crossed signals: the role of interleukin-15 and -18 in autoimmunity,” Rheumatology, vol. 47, no. 9, pp. 1269–1277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Reddy, “Interleukin-18: recent advances,” Current Opinion in Hematology, vol. 11, no. 6, pp. 405–410, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Dao, K. Ohashi, T. Kayano, M. Kurimoto, and H. Okamura, “Interferon-γ-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells,” Cellular Immunology, vol. 173, no. 2, pp. 230–235, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Shimizu, T. Fujita, Y. Fuke et al., “High circulating levels of interleukin-18 binding protein indicate the severity of glomerular involvement in systemic lupus erythematosus,” Modern Rheumatology, vol. 22, no. 1, pp. 73–79, 2012. View at Publisher · View at Google Scholar
  21. E. Marín-Serrano, C. Rodríguez-Ramos, F. Diaz, L. Martín-Herrera, and J. Girón-González, “Modulation of the anti-inflammatory interleukin 10 and of proapoptotic IL-18 in patients with chronic hepatitis C treated with interferon alpha and ribavirin,” Journal of Viral Hepatitis, vol. 13, no. 4, pp. 230–234, 2006.
  22. H. Nakae, Y. J. Zheng, H. Wada, K. Tajimi, and S. Endo, “Involvement of IL-18 and soluble Fas in patients with postoperative hepatic failure,” European Surgical Research, vol. 35, no. 2, pp. 61–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. El-Masry, M. Lotfy, W. A. Nasif, I. M. El-Kady, and M. Al-Badrawy, “Elevated serum level of interleukin (IL)-18, interferon (IFN)-c and soluble fas in patients with pulmonary complications in tuberculosis,” Acta Microbiologica et Immunologica Hungarica, vol. 54, no. 1, pp. 65–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Imai, N. Sato, Y. Inoue, and S. Endo, “A study of interleukin 18 and sFas in septic multiple organ dysfunction syndrome,” Journal of the Iwate Medical Association, vol. 57, no. 5, pp. 497–503, 2005.
  25. M. Kaizu, Y. Ami, T. Nakasone et al., “Higher levels of IL-18 circulate during primary infection of monkeys with a pathogenic SHIV than with a nonpathogenic SHIV,” Virology, vol. 313, no. 1, pp. 8–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Sharma, A. Chakraborti, A. Das, R. K. Dhiman, and Y. Chawla, “Elevation of interleukin-18 in chronic hepatitis C: implications for hepatitis C virus pathogenesis,” Immunology, vol. 128, no. 1, part 2, pp. e514–e522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Y. Chen, T. Y. Hsieh, C. W. Hsieh, F. J. Lin, and J. L. Lan, “Increased apoptosis of peripheral blood lymphocytes and its association with interleukin-18 in patients with active untreated adult-onset Still's disease,” Arthritis Care and Research, vol. 57, no. 8, pp. 1530–1538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Sahebari, Z. Rezaieyazdi, M. J. Nakhjavani, M. Hatef, M. Mahmoudi, and S. Akhlaghi, “Correlation between serum concentrations of soluble Fas (CD95/Apo-1) and IL-18 in patients with systemic lupus erythematosus,” Rheumatology International, vol. 32, no. 3, pp. 601–606, 2012. View at Publisher · View at Google Scholar
  29. P. Y. Tsai, S. M. Ka, J. M. Chang, et al., “Antroquinonol differentially modulates T cells activity, reduces IL-18 production, but enhances Nrf2 activation in accelerated severe lupus nephritis,” Arthritis & Rheumatism, vol. 64, no. 1, pp. 232–242, 2012.
  30. J. Faust, J. Menke, J. Kriegsmann et al., “Correlation of renal tubular epithelial cell-derived interleukin-18 up-regulation with disease activity in MRL-Faslpr mice with autoimmune lupus nephritis,” Arthritis & Rheumatism, vol. 46, no. 11, pp. 3083–3095, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. H. Hao, D. Q. Ye, G. Q. Zhang et al., “Elevated levels of serum soluble Fas are associated with organ and tissue damage in systemic lupus erythematosus among Chinese,” Archives of Dermatological Research, vol. 297, no. 7, pp. 329–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. N. A. Fathi, M. R. Hussein, H. I. Hassan, E. Mosad, H. Galal, and N. A. Afifi, “Glomerular expression and elevated serum Bcl-2 and Fas proteins in lupus nephritis: preliminary findings,” Clinical and Experimental Immunology, vol. 146, no. 2, pp. 339–343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Miret, J. Font, R. Molina et al., “Relationship of oncogenes (sFas, Bcl-2) and cytokines (IL-10, alfa-TNF) with the activity of systemic lupus erythematosus,” Anticancer Research, vol. 21, no. 4B, pp. 3053–3059, 2001. View at Scopus
  34. E. M. Tan, A. S. Cohen, and J. F. Fries, “The 1982 revised criteria for the classification of systemic lupus erythrematosus,” Arthritis & Rheumatism, vol. 25, no. 11, pp. 1271–1277, 1982. View at Scopus
  35. M. A. Dalboni, C. Sardenberg, M. C. Andreoli et al., “Soluble Fas: a novel marker of inflammation in uremia,” Artificial Organs, vol. 27, no. 8, pp. 687–691, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. G. C. Tsokos, “Systemic lupus erythematosus,” The New England Journal of Medicine, vol. 365, no. 22, pp. 2110–2121, 2011.
  37. D. Liang, W. Ma, C. Yao, H. Liu, and X. Chen, “Imbalance of interleukin 18 and interleukin 18 binding protein in patients with lupus nephritis,” Cellular & Molecular Immunology, vol. 3, no. 4, pp. 303–306, 2006. View at Scopus
  38. N. Calvani, H. B. Richards, M. Tucci, G. Pannarale, and F. Silvestris, “Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis,” Clinical and Experimental Immunology, vol. 138, no. 1, pp. 171–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Tsukinoki, H. Sugiyama, R. Sunami et al., “Mesangial cell Fas ligand: upregulation in human lupus nephritis and NF-κB-mediated expression in cultured human mesangial cells,” Clinical and Experimental Nephrology, vol. 8, no. 3, pp. 196–205, 2004. View at Publisher · View at Google Scholar · View at Scopus