About this Journal Submit a Manuscript Table of Contents
ISRN Signal Processing
Volume 2012 (2012), Article ID 781653, 11 pages
http://dx.doi.org/10.5402/2012/781653
Research Article

A Hierarchical Algorithm for Multiphase Texture Image Segmentation

1Department of Eye and Vision Science, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK
2Centre for Mathematical Imaging Techniques and Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL, UK

Received 30 March 2012; Accepted 3 May 2012

Academic Editors: G. Camps-Valls, I. Guler, and C.-W. Kok

Copyright © 2012 Yalin Zheng and Ke Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Adams and L. Bischof, “Seeded region growing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641–647, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583–598, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. G. Leclerc, “Constructing simple stable descriptions for image partitioning,” International Journal of Computer Vision, vol. 3, no. 1, pp. 73–102, 1989. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. View at Publisher · View at Google Scholar · View at Scopus
  5. W. B. Tao and X.-C. Tai, “Multiple piecewise constant active contours for image segmentation using graph cuts optimization,” Tech. Rep. 09-13, UCLA CAM report, 2009.
  6. D. Mumford and J. Shah, “Optimal approximation by piecewise smooth functions and associated variational problems,” Communications on Pure and Applied Mathematics, vol. 42, pp. 577–685, 1989.
  7. J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986. View at Scopus
  8. T. Chan and J. Shen, Image Processing and Analysis: Variational, Pde, Wavelet, And Stochastic Methods, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2005.
  9. N. Badshah and K. Chen, “Multigrid method for the Chan-Vese model in variational segmentation,” Communications in Computational Physics, vol. 4, no. 2, pp. 294–316, 2008. View at Scopus
  10. T. P. Weldon, W. E. Higgins, and D. F. Dunn, “Efficient Gabor filter design for texture segmentation,” Pattern Recognition, vol. 29, no. 12, pp. 2005–2015, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Ambrosio and V. M. Tortorelli, “Approximation of functionals depending on jumps by elliptic functionals via γ-convergence,” Communications on Pure and Applied Mathematics, vol. 43, pp. 999–1036, 1990.
  12. T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations,” Journal of Computational Physics, vol. 79, no. 1, pp. 12–49, 1988. View at Scopus
  14. B. Sandberg, T. Chan, and L. Vese, “A level-set and Gabor-based active contour algorithm for segmenting textured images,” Tech. Rep. Cam02-39, UCLA Department of Mathematics CAM Report, 2002.
  15. M. Rousson, T. Brox, and R. Deriche, “Active unsupervised texture segmentation on a diffusion based feature space,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 699–704, June 2003. View at Scopus
  16. S. C. Zhu and A. Yuille, “Region competition: unifying snakes, region growing, and bayes/mdl for multiband image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 9, pp. 884–900, 1996. View at Scopus
  17. J. Kim, J. W. Fisher, A. Yezzi, M. Çetin, and A. S. Willsky, “A nonparametric statistical method for image segmentation using information theory and curve evolution,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1486–1502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Ni, X. Bresson, T. F. Chan, and S. Esedoglu, “Local histogram based segmentation using the wasserstein distance,” International Journal of Computer Vision, vol. 84, no. 1, pp. 97–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Mory and R. Ardon, “Fuzzy region competition: a convex two-phase segmentation framework,” in Proceedings of the 1st International Conference on Scale Space and Variational Methods in Computer Vision, vol. 4485, pp. 214–226, 2007.
  20. F. Li and M. K. Ng, “Kernel density estimation basedmultiphase fuzzy region competition method for texture image segmentation,” Communications in Computational Physics, vol. 8, no. 3, pp. 623–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Li, M. K. Ng, and C. Li, “Variational fuzzy mumford-shah model for image segmentation,” SIAM Journal on Applied Mathematics, vol. 70, no. 7, pp. 2750–2770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. F. Chan and L. A. Vese, “An efficient variational multiphase motion for the Mumford-Shah segmentation model,” in Proceedings of the 34 Asilomar Conference on Signals, Systems & Computers, pp. 490–494, November 2000. View at Scopus
  23. L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” International Journal of Computer Vision, vol. 50, no. 3, pp. 271–293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Ben Ayed, A. Mitiche, and Z. Belhadj, “Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1493–1500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Bertelli, B. Sumengen, B. S. Manjunath, and F. Gibou, “A variational framework for multiregion pairwise-similarity-based image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 8, pp. 1400–1414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Gao and T. D. Bui, “Image segmentation and selective smoothing by using Mumford-Shah model,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1537–1549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Li, M. K. Ng, T. Y. Zeng, and C. Shen, “A multiphase image segmentation method based on fuzzy region competition,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 277–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Hintermüller and A. Laurain, “Multiphase image segmentation and modulation recovery based on shape and topological sensitivity,” Journal of Mathematical Imaging and Vision, vol. 35, no. 1, pp. 1–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Paragios and R. Deriche, “Geodesic active regions: a new framework to deal with frame partition problems in computer vision,” Journal of Visual Communication and Image Representation, vol. 13, no. 1-2, pp. 249–268, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Sandberg, S. H. Kang, and T. F. Chan, “Unsupervised multiphase segmentation: a phase balancing model,” IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 119–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. M. Jung, S. H. Kang, and J. Shen, “Multiphase image segmentation via modica-mortola phase transition,” SIAM Journal on Applied Mathematics, vol. 67, no. 5, pp. 1213–1232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Esedoglu and Y. H. R. Tsai, “Threshold dynamics for the piecewise constant Mumford-Shah functional,” Journal of Computational Physics, vol. 211, no. 1, pp. 367–384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Merriman, J. K. Bence, and S. J. Osher, “Motion of Multiple Junctions: a level set approach,” Journal of Computational Physics, vol. 112, no. 2, pp. 334–363, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Li, C. Shen, and C. Li, “Multiphase soft segmentation with total variation and H1 regularization,” Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 98–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Ben Salah, A. Mitiche, and I. Ben Ayed, “Effective level set image segmentation with a kernel induced data term,” IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 220–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Cremers, “A multiphase level set framework for motion segmentation,” in Proceedings of the 4th International Conference on Scale Space Methods in Computer Vision, vol. 2695, pp. 599–614, 2003.
  37. D. Cremers and S. Soatto, “Motion competition: a variational approach to piecewise parametric motion segmentation,” International Journal of Computer Vision, vol. 62, no. 3, pp. 249–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Jeon, M. Alexander, W. Pedrycz, and N. Pizzi, “Unsupervised hierarchical image segmentation with level set and additive operator splitting,” Pattern Recognition Letters, vol. 26, no. 10, pp. 1461–1469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Badshah and K. Chen, “On two multigrid algorithms for modeling variational multiphase image segmentation,” IEEE Transactions on Image Processing, vol. 18, no. 5, pp. 1097–1106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Ni, B. W. Hong, S. Soatto, and T. F. Chan, “Unsupervised multiphase segmentation: a recursive approach,” Computer Vision and Image Understanding, vol. 113, no. 4, pp. 502–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Chambolle, “An algorithm for total variation minimization and applications,” Journal of Mathematical Imaging and Vision, vol. 20, no. 1-2, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. F. Aujol, G. Aubert, and L. Blanc-Féraud, “Wavelet-based level set evolution for classification of textured images,” IEEE Transactions on Image Processing, vol. 12, no. 12, pp. 1634–1641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Wei and Y. Xin, “A modified multiphase level set evolution scheme for aerial image segmentation,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 21, no. 7, pp. 1195–1212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J. F. Gurholt and X. C. Tai, “3D multiphase piecewise constant level set method based on graph cut minimization,” Numerical Mathematics, vol. 2, pp. 403–420, 2009.
  45. Y. N. Law, H. K. Lee, and A. M. Yip, “A multiresolution stochastic level set method for Mumford-Shah image segmentation,” IEEE Transactions on Image Processing, vol. 17, no. 12, pp. 2289–2300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. J. F. Garamendi, N. Malpica, and E. Schiavi, “Multiphase systems for medical image region classification,” Mathematical Models in Engineering, Biology and Medicine, vol. 1124, pp. 158–165, 2009.
  47. X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran, and S. Osher, “Fast global minimization of the active contour/snake model,” Journal of Mathematical Imaging and Vision, vol. 28, no. 2, pp. 151–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Bae, X.-C. Tai, et al., “Efficient global minimization methods for image segmentation models with four regions,” UCLA CAM Report, pp. 11–82, 2011.
  49. Y. W. Wen, M. K. Ng, and W. K. Ching, “Iterative algorithms based on decoupling of deblurring and denoising for image restoration,” SIAM Journal on Scientific Computing, vol. 30, no. 5, pp. 2655–2674, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Mory and R. Ardon, “Variational segmentation using fuzzy region competition and local non-parametric probability density functions,” in Proceedings of the 11th International Conference on Computer Vision, vol. 1–6, pp. 1032–1039, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Houhou, J.-P. Thiran, and X. Bresson, “Fast texture segmentation based on semi-local region descriptor and active contour,” Numerical Mathematics, vol. 2, pp. 445–468, 2009.