About this Journal Submit a Manuscript Table of Contents
ISRN Soil Science
Volume 2012 (2012), Article ID 981842, 5 pages
http://dx.doi.org/10.5402/2012/981842
Research Article

Nitrogen Fixation by US and Middle Eastern Chickpeas with Commercial and Wild Middle Eastern Inocula

1Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA
2Center for Sustaining Agriculture and Natural Resources, Washington State University, Pullman, WA 99164-6420, USA
3Land Management and Water Conservation Research Unit, USDA-ARS, Pullman, WA 99164-6421, USA
4Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164-6434, USA

Received 16 December 2011; Accepted 29 January 2012

Academic Editor: Y. Feng

Copyright © 2012 Rita Abi-Ghanem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. FAO, Current World Fertilizer and Trends and Outlook to 2011-2012, FAO, Rome, Italy, 2008.
  2. USDA-ERS, Average U.S. Farm Prices of Selected Fertilizers, 1960–2011, 2011.
  3. IFA (International Fertilizer Industry Association), Greenhouse Gas Emissions and Fertilizer Production, 2009.
  4. EIA (U.S. Energy Information Administration), World Proved Reserves of Oil and Natural Gas, Most Recent Estimates, 2009.
  5. K. Albala, Beans: A History, Berg Publishers, New York, NY, USA, 2007.
  6. M. R. Naghavi and M. R. Jahansouz, “Variation in the agronomic and morphological traits of Iranian chickpea accessions,” Journal of Integrative Plant Biology, vol. 47, no. 3, pp. 375–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. NASS National Agriculture Statistics Service, Quick Stats for Chickpeas (Garbanzo), 2011.
  8. M. J. Unkovich and J. S. Pate, “An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes,” Field Crops Research, vol. 65, no. 2-3, pp. 211–228, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Carranca, A. De Varennes, and D. Rolston, “Biological nitrogen fixation by fababean, pea and chickpea, under field conditions, estimated by the 15N isotope dilution technique,” European Journal of Agronomy, vol. 10, no. 1, pp. 49–56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Brockwell, R. R. Gault, D. F. Herridge, L. J. Morthorpe, and R. J. Roughly, “Studies on alternativemeans of legume inoculation: microbiological and agronomic appraisals of commercial procedures for inoculating soybeans with Bradyrhizobium japonicum,” Australian Journal of Agricultural Research, vol. 40, pp. 753–762, 1989.
  11. J. Brockwell and P. J. Bottomley, “Recent advances in inoculant technology and prospects for the future,” Soil Biology and Biochemistry, vol. 27, no. 4-5, pp. 683–697, 1995. View at Scopus
  12. R. Abi-Ghanem, L. Carpenter-Boggs, and J. L. Smith, “Cultivar effects on nitrogen fixation in peas and lentils,” Biology and Fertility of Soils, vol. 47, pp. 115–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. P. Horn, R. C. Dalal, C. J. Birch, and J. A. Doughton, “Nitrogen fixation in chickpeas as affected by planting time and tillage practice,” in Proceedings of the 8th Australian Agronomy Conference, D. L. Michalk and J. E. Pratley, Eds., pp. 1–5, Queensland, Australia, February 1996.
  14. P. M. Chalk, “Estimation of N2 fixation by isotope dilution: an appraisal of techniques involving 15N enrichment and their application,” Soil Biology and Biochemistry, vol. 17, no. 4, pp. 389–410, 1985. View at Scopus
  15. S. K. A. Danso, G. Hardarson, and F. Zapata, “Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2 fixation,” Plant and Soil, vol. 152, no. 1, pp. 25–52, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. F. R. Warembourg, “Nitrogen fixation in soil and plant systems,” in Nitrogen Isotope Techniques, R. Knowles and T. H. Blackburn, Eds., pp. 127–155, Academic Press, New York, NY, USA, 1993.
  17. K. Tamura, M. Nei, and S. Kumar, “Prospects for inferring very large phylogenies by using the neighbor-joining method,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11030–11035, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Fried and V. Middelboe, “Measurement of amount of nitrogen fixed by a legume crop,” Plant and Soil, vol. 47, no. 3, pp. 713–715, 1977. View at Publisher · View at Google Scholar
  19. R. Knowles and H. T. Blackburn, Nitrogen Isotope Techniques, Academic Press, San Diego, Calif, USA, 1993.
  20. S. C. Smith, D. F. Bezdicek, R. F. Turco, and H. H. Cheng, “Seasonal N2 fixation by cool-season pulses based on several 15N methods,” Plant and Soil, vol. 97, no. 1, pp. 3–13, 1987. View at Publisher · View at Google Scholar · View at Scopus
  21. W. G. Weisburgh, S. M. Barns, D. A. Pelletier, and D. J. Lane, “16S ribosomal DNA amplification for phylogenic study,” Journal of Bacteriology, vol. 173, pp. 697–703, 1991.
  22. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994. View at Scopus
  24. K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0,” Molecular Biology and Evolution, vol. 24, no. 8, pp. 1596–1599, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. C. Bontemps, G. N. Elliott, M. F. Simon et al., “Burkholderia species are ancient symbionts of legumes,” Molecular Ecology, vol. 19, pp. 44–52, 2010.
  26. K. Vermis, T. Coenye, J. J. Lipuma, E. Mahenthiralingam, H. J. Nelis, and P. Vandamme, “Proposal to accommodate Burkholderia cepacia genemovar VI as Burkholderia dolosa sp. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, pp. 689–691, 2004.
  27. G. N. Elliott, W. M. Chen, C. Bontemps et al., “Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum,” Annals of Botany, vol. 100, no. 7, pp. 1403–1411, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. P. Menna, M. Hungria, F. G. Barcellos, E. V. Bangel, P. N. Hess, and E. Martínez-Romero, “Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants,” Systematic and Applied Microbiology, vol. 29, no. 4, pp. 315–332, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. L. Moulin, A. Munive, B. Dreyfus, and C. Boivin-Masson, “Nodulation of legumes by members of the β-subclass of Proteobacteria,” Nature, vol. 411, no. 6840, pp. 948–950, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. C. F. Barrett and M. A. Parker, “Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama,” Systematic and Applied Microbiology, vol. 28, no. 1, pp. 57–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Sy, E. Giraud, P. Jourand et al., “Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes,” Journal of Bacteriology, vol. 183, no. 1, pp. 214–220, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. A. B. Bello, W. A. Ceron-Dias, C. D. Nickell, E. O. Elsheriff, and L. C. Davis, “Influence of cultivar, between-row spacing and plant population of fixation of soybeans,” Crop Science, vol. 20, pp. 751–775, 1980.
  33. B. E. Caldwell and G. Vest, “Effects of Rhizobium japonicum strains on soybean yields,” Crop Science, vol. 10, pp. 19–21, 1970.
  34. L. D. Kuykendall and D. F. Weber, “Genetically marked Rhizobium identifiable as inoculum strain in nodules of soybean plants grown in fields populated with Rhizobium japonicum,” Applied and Environmental Microbiology, vol. 36, pp. 15–919, 1978.