About this Journal Submit a Manuscript Table of Contents
ISRN Urology
Volume 2012 (2012), Article ID 581539, 9 pages
http://dx.doi.org/10.5402/2012/581539
Review Article

Matrix Metalloproteinases and Bladder Cancer: What is New?

1Department of Urology, Universitat Autonòma de Barcelona, Barcelona, 08025 Fundació Puigvert, Spain
2Department of Urology, Universidad de Oviedo, 33003 Oviedo, Spain
3Department of Pathology, Universitat Autonòma de Barcelona, Barcelona, 08025 Fundació Puigvert, Spain
4Unidad de Investigacion, Hospital de Jove, 33290 Gijón, Spain

Received 15 May 2012; Accepted 3 June 2012

Academic Editors: J. I. Izawa and J. H. Ku

Copyright © 2012 O. Rodriguez Faba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Scopus
  2. C. M. Samanic, M. Kogevinas, D. T. Silverman et al., “Occupation and bladder cancer in a hospital-based case-control study in Spain,” Occupational and Environmental Medicine, vol. 65, no. 5, pp. 347–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. X. R. Wu, “Urothelial tumorigenesis: a tale of divergent pathways,” Nature Reviews Cancer, vol. 5, no. 9, pp. 713–725, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Gohji, N. Fujimoto, T. Komiyama et al., “Elevation of serum levels of matrix metalloproteinase-2 and -3 as new predictors of recurrence in patients with urothelial carcinoma,” Cancer, vol. 78, no. 11, pp. 2379–2387, 1996. View at Publisher · View at Google Scholar
  5. G. D. Steinberg, D. L. Trump, and K. B. Cummings, “Metastatic bladder cancer: natural history, clinical course, and consideration for treatment,” Urologic Clinics of North America, vol. 19, no. 4, pp. 735–746, 1992. View at Scopus
  6. N. Buyru, H. Tigli, F. Ozcan, and N. Dalay, “Ras oncogene mutations in urine sediments of patients with bladder cancer,” Journal of Biochemistry and Molecular Biology, vol. 36, no. 4, pp. 399–402, 2003. View at Scopus
  7. Z. Feng, W. Hu, W. N. Rom, F. A. Beland, and M. S. Tang, “4-Aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene,” Carcinogenesis, vol. 23, no. 10, pp. 1721–1727, 2002. View at Scopus
  8. A. Hartmann, G. Schlake, D. Zaak et al., “Occurrence of chromosome 9 and p53 alterations in multifocal dysplasia and carcinoma in situ of human urinary bladder,” Cancer Research, vol. 62, no. 3, pp. 809–818, 2002. View at Scopus
  9. C. M. Overall and C. López-Otín, “Strategies for MMP inhibition in cancer: innovations for the post-trial era,” Nature Reviews Cancer, vol. 2, no. 9, pp. 657–672, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Vasala, P. Kuvaja, and T. Turpeenniemi-Hujanen, “Low circulating levels of ProMMP-2 are associated with adverse prognosis in bladder cancer,” Tumor Biology, vol. 29, no. 5, pp. 279–286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Bode, “Structural basis of matrix metalloproteinase function,” Biochemical Society Symposium, no. 70, pp. 1–14, 2003. View at Scopus
  12. W. Bode, C. Fernandez-Catalan, H. Tschesche, F. Grams, H. Nagase, and K. Maskos, “Structural properties of matrix metalloproteinases,” Cellular and Molecular Life Sciences, vol. 55, no. 4, pp. 639–652, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Knäuper and G. Murphy, “Methods for studying activation of matrix metalloproteinases,” Methods in Molecular Biology, vol. 622, pp. 233–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Nagase, J. J. Enghild, K. Suzuki, and G. Salvesen, “Stepwise activation mechanisms of the precursor of the matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate,” Biochemistry, vol. 29, no. 24, pp. 5783–5789, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Hadler-Olsen, B. Fadnes, I. Sylte, L. Uhlin-Hansen, and J. O. Winberg, “Regulation of matrix metalloproteinase activity in health and disease,” FEBS Journal, vol. 278, no. 1, pp. 28–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. K. Strickland, J. D. Ashcom, S. Williams, W. H. Burgess, M. Migliorini, and W. S. Argraves, “Sequence identity between the α2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor,” Journal of Biological Chemistry, vol. 265, no. 29, pp. 17401–17404, 1990. View at Scopus
  17. F. X. Gomis-Rüth, K. Maskos, M. Betz et al., “Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1,” Nature, vol. 389, no. 6646, pp. 77–81, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Fernandez-Catalan, W. Bode, R. Huber et al., “Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor,” The EMBO Journal, vol. 17, no. 17, pp. 5238–5248, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Zucker, D. Pei, J. Cao, and C. Lopez-Otin, “Membrane type-matrix metalloproteinases (MT-MMP),” Current Topics in Developmental Biology, vol. 54, pp. 1–74, 2003. View at Scopus
  20. C. M. Overall and O. Kleifeld, “Towards third generation matrix metalloproteinase inhibitors for cancer therapy,” British Journal of Cancer, vol. 94, no. 7, pp. 941–946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Krüger, M. J. Arlt, M. Gerg et al., “Antimetastatic activity of a novel mechanism-based gelatinase inhibitor,” Cancer Research, vol. 65, no. 9, pp. 3523–3526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Morales, S. Perrier, J. M. Florent et al., “Crystal structures of novel non-peptidic, non-zinc chelating inhibitors bound to MMP-12,” Journal of Molecular Biology, vol. 341, no. 4, pp. 1063–1076, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. D. Sternlicht and Z. Werb, “How matrix metalloproteinases regulate cell behavior,” Annual Review of Cell and Developmental Biology, vol. 17, pp. 463–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Lovejoy, A. R. Welch, S. Carr et al., “Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors,” Nature Structural Biology, vol. 6, no. 3, pp. 217–221, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. A. H. Baker, D. R. Edwards, and G. Murphy, “Metalloproteinase inhibitors: biological actions and therapeutic opportunities,” Journal of Cell Science, vol. 115, part 19, pp. 3719–3727, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Velasco and B. Lange-Asschenfeldt, “Dermatological aspects of angiogenesis,” British Journal of Dermatology, vol. 147, no. 5, pp. 841–852, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Heljasvaara, P. Nyberg, J. Luostarinen et al., “Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases,” Experimental Cell Research, vol. 307, no. 2, pp. 292–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Mannello, F. Luchetti, E. Falcieri, and S. Papa, “Multiple roles of matrix metalloproteinases during apoptosis,” Apoptosis, vol. 10, no. 1, pp. 19–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Egeblad and Z. Werb, “New functions for the matrix metalloproteinases in cancer progression,” Nature Reviews Cancer, vol. 2, no. 3, pp. 161–174, 2002. View at Scopus
  30. C. C. Lynch and L. M. Matrisian, “Matrix metalloproteinases in tumor-host cell communication,” Differentiation, vol. 70, no. 9-10, pp. 561–573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. C. E. Brinckerhoff and L. M. Matrisian, “Matrix metalloproteinases: a tail of a frog that became a prince,” Nature Reviews Molecular Cell Biology, vol. 3, no. 3, pp. 207–214, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Strand, P. Vollmer, L. van den Abeelen et al., “Cleavage of CD95 by matrix metalloproteinase-7 induces apoptosis resistance in tumour cells,” Oncogene, vol. 23, no. 20, pp. 3732–3736, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Mitsiades, W. H. Yu, V. Poulaki, M. Tsokos, and I. Stamenkovic, “Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity,” Cancer Research, vol. 61, no. 2, pp. 577–581, 2001. View at Scopus
  34. W. H. Yu, F. Woessner Jr., J. D. McNeish, and I. Stamenkovic, “CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling,” Genes and Development, vol. 16, no. 3, pp. 307–323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Boulay, R. Masson, M. P. Chenard et al., “High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase,” Cancer Research, vol. 61, no. 5, pp. 2189–2193, 2001. View at Scopus
  36. R. Baserga, “The contradictions of the insulin-like growth factor 1 receptor,” Oncogene, vol. 19, no. 49, pp. 5574–5581, 2000. View at Scopus
  37. A. Ishizuya-Oka, Q. Li, T. Amano, S. Damjanovski, S. Ueda, and Y. B. Shi, “Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis,” Journal of Cell Biology, vol. 150, no. 5, pp. 1177–1188, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. C. J. Sympson, R. S. Talhouk, C. M. Alexander et al., “Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression,” Journal of Cell Biology, vol. 125, no. 3, pp. 681–693, 1994. View at Scopus
  39. J. P. Witty, T. Lempka, R. J. Coffey Jr., and L. M. Matrisian, “Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis,” Cancer Research, vol. 55, no. 7, pp. 1401–1406, 1995. View at Scopus
  40. T. H. Vu, J. M. Shipley, G. Bergers et al., “MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypetrophic chondrocytes,” Cell, vol. 93, no. 3, pp. 411–422, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Fernández-Resa, E. Mira, and A. R. Quesada, “Enhanced detection of casein zymography of matrix metalloproteinases,” Analytical Biochemistry, vol. 224, no. 1, pp. 434–435, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. J. F. Woessner Jr., “Quantification of matrix metalloproteinases in tissue samples,” Methods in Enzymology, vol. 248, pp. 510–528, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Fingleton, T. Vargo-Gogola, H. C. Crawford, and L. M. Matrisian, “Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis,” Neoplasia, vol. 3, no. 6, pp. 459–468, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. W. G. Stetler-Stevenson, “Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention,” Journal of Clinical Investigation, vol. 103, no. 9, pp. 1237–1241, 1999. View at Scopus
  45. M. Ferreras, U. Felbor, T. Lenhard, B. R. Olsen, and J. M. Delaisse, “Generation and degradation of human endostatin proteins by various proteinases,” FEBS Letters, vol. 486, no. 3, pp. 247–251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. C. F. Sier, G. Casetta, J. H. Verheijen et al., “Enhanced urinary gelatinase activities (matrix metalloproteinases 2 and 9) are associated with early-stage bladder carcinoma: a comparison with clinically used tumor markers,” Clinical Cancer Research, vol. 6, no. 6, pp. 2333–2340, 2000. View at Scopus
  47. S. Gerhards, K. Jung, F. Koenig et al., “Excretion of matrix metalloproteinases 2 and 9 in urine is associated with a high stage and grade of bladder carcinoma,” Urology, vol. 57, no. 4, pp. 675–679, 2001. View at Scopus
  48. J. E. Nutt, J. K. Mellon, K. Qureshi, and J. Lunec, “Matrix metalloproteinase-1 is induced by epidermal growth factor in human bladder tumour cell lines and is detectable in urine of patients with bladder tumours,” British Journal of Cancer, vol. 78, no. 2, pp. 215–220, 1998. View at Scopus
  49. R. S. Svatek, J. B. Shah, J. Xing et al., “A multiplexed, particle-based flow cytometric assay identified plasma matrix metalloproteinase-7 to be associated with cancer-related death among patients with bladder cancer,” Cancer, vol. 116, no. 19, pp. 4513–4519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Szarvas, M. Becker, F. vom Dorp et al., “Matrix metalloproteinase-7 as a marker of metastasis and predictor of poor survival in bladder cancer,” Cancer Science, vol. 101, no. 5, pp. 1300–1308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Kanayama, K. Yokota, Y. Kurokawa, Y. Murakami, M. Nishitani, and S. Kagawa, “Prognostic values of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression in bladder cancer,” Cancer, vol. 82, no. 7, pp. 1359–1366, 1998. View at Publisher · View at Google Scholar
  52. O. Rodríguez Faba, J. M. Fernández Gómez, J. Palou Redorta, S. Escaf Barmadah, F. J. Vizoso, and H. Villavicencio, “Significance of collagenase 3 (matrix metalloproteinase 13) in invasive bladder cancer: correlation with pathological parameters,” Urologia Internationalis, vol. 78, no. 2, pp. 140–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Naruo, H. Kanayama, H. Takigawa, S. Kagawa, K. Yamashita, and T. Hayakawa, “Serum levels of a tissue inhibitor of metalloproteinases-1 (TIMP-1) in bladder cancer patients,” International Journal of Urology, vol. 1, no. 3, pp. 228–231, 1994. View at Scopus
  54. K. Vasala and T. Turpeenniemi-Hujanen, “Serum tissue inhibitor of metalloproteinase-2 (TIMP-2) and matrix metalloproteinase-2 in complex with the inhibitor (MMP-2:TIMP-2) as prognostic markers in bladder cancer,” Clinical Biochemistry, vol. 40, no. 9-10, pp. 640–644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Davies, J. Waxman, H. Wasan et al., “Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion,” Cancer Research, vol. 53, no. 22, pp. 5365–5369, 1993. View at Scopus
  56. D. J. Grignon, W. Sakr, M. Toth et al., “High levels of tissue inhibitor of metalloproteinase-2 (TIMP-2) expression are associated with poor outcome in invasive bladder cancer,” Cancer Research, vol. 56, no. 7, pp. 1654–1659, 1996. View at Scopus
  57. A. S. Papathoma, C. Petraki, A. Grigorakis et al., “Prognostic significance of matrix metalloproteinases 2 and 9 in bladder cancer,” Anticancer Research B, vol. 20, no. 3, pp. 2009–2013, 2000. View at Scopus
  58. E. Ozdemir, Y. Kakehi, H. Okuno, T. Habuchi, Y. Okada, and O. Yoshida, “Strong correlation of basement membrane degradation with P53 inactivation and/or MDM2 overexpression in superficial urothelial carcinomas,” Journal of Urology, vol. 158, no. 1, pp. 206–211, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Kitagawa, K. Kunimi, H. Ito et al., “Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human urothelial carcinomas,” Journal of Urology, vol. 160, no. 4, pp. 1540–1545, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. M. A. Mohammad, N. R. Ismael, S. M. Shaarawy, and M. M. El-Merzabani, “Prognostic value of membrane type 1 and 2 matrix metalloproteinase expression and gelatinase a activity in bladder cancer,” International Journal of Biological Markers, vol. 25, no. 2, pp. 69–74, 2010. View at Scopus
  61. I. Hara, H. Miyake, S. Hara, S. Arakawa, and S. Kamidono, “Significance of matrix metalloproteinases and tissue inhibitors of metalloproteinase expression in the recurrence of superficial transitional cell carcinoma of the bladder,” Journal of Urology, vol. 165, no. 5, pp. 1769–1772, 2001. View at Scopus
  62. K. Gohji, N. Fujimoto, J. Ohkawa, A. Fujii, and M. Nakajima, “Imbalance between serum matrix metalloproteinase-2 and its inhibitor as a predictor of recurrence of urothelial cancer,” British Journal of Cancer, vol. 77, no. 4, pp. 650–655, 1998. View at Scopus
  63. K. Gohji, N. Fujimoto, I. Hara, A. Fujii, A. Gotoh, H. Okada, et al., “Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension,” International Journal of Cancer, vol. 79, no. 1, pp. 96–101, 1998.
  64. K. Gohji, N. Fujimoto, A. Fujii, T. Komiyama, J. Okawa, and M. Nakajima, “Prognostic significance of circulating matrix metalloproteinase-2 to tissue inhibitor of metalloproteinases-2 ratio in recurrence of urothelial cancer after complete resection,” Cancer Research, vol. 56, no. 14, pp. 3196–3198, 1996. View at Scopus
  65. J. C. Angulo, A. Ferruelo, J. M. Rodriguez-Barbero, C. Nunez, F. R. de Fata, and J. Gonzalez, “Detection and molecular staging of bladder cancer using real-time RT-PCR for gelatinases (MMP-2, MMP-9) and TIMP-2 in peripheral blood,” Actas Urologicas Espanolas, vol. 35, no. 3, pp. 127–136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Szarvas, T. Jager, M. Becker et al., “Validation of circulating MMP-7 level as an independent prognostic marker of poor survival in urinary bladder cancer,” Pathology and Oncology Research, vol. 17, no. 2, pp. 325–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. A. I. Tasci, V. Tugcu, E. Ozbek, B. Ozbay, A. Simsek, and V. Koksal, “A single-nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances bladder cancer susceptibility,” BJU International, vol. 101, no. 4, pp. 503–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. B. V. Offersen, M. M. Knap, M. R. Horsman, J. Verheijen, R. Hanemaaijer, and J. Overgaard, “Matrix metalloproteinase-9 measured in urine from bladder cancer patients is an independent prognostic marker of poor survival,” Acta Oncologica, vol. 49, no. 8, pp. 1283–1287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Szarvas, B. B. Singer, M. Becker et al., “Urinary matrix metalloproteinase-7 level is associated with the presence of metastasis in bladder cancer,” BJU International, vol. 107, no. 7, pp. 1069–1073, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. O. Hoque, S. Begum, M. Brait et al., “Tissue inhibitor of metalloproteinases-3 promoter methylation is an independent prognostic factor for bladder cancer,” Journal of Urology, vol. 179, no. 2, pp. 743–747, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Eissa, R. Ali-Labib, M. Swellam, M. Bassiony, F. Tash, and T. M. El-Zayat, “Noninvasive diagnosis of bladder cancer by detection of matrix metalloproteinases (MMP-2 and MMP-9) and their inhibitor (TIMP-2) in urine,” European Urology, vol. 52, no. 5, pp. 1388–1397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. N. Holten-Andersen, N. Brunner, H. J. Nielsen et al., “Levels of tissue inhibitor of metalloproteinases 1 in plasma and urine from patients with bladder cancer,” International Journal of Biological Markers, vol. 21, no. 1, pp. 6–11, 2006. View at Scopus
  73. A. Di Carlo, D. Terracciano, A. Mariano, and V. Macchia, “Urinary gelatinase activities (matrix metalloproteinases 2 and 9) in human bladder tumors,” Oncology Reports, vol. 15, no. 5, pp. 1321–1326, 2006. View at Scopus