About this Journal Submit a Manuscript Table of Contents
ISRN Urology
Volume 2012 (2012), Article ID 643181, 6 pages
http://dx.doi.org/10.5402/2012/643181
Research Article

External Validation of an Artificial Neural Network and Two Nomograms for Prostate Cancer Detection

1Department of Urology, HELIOS Hospital, 15526 Bad Saarow, Germany
2Institute of Pathology, HELIOS Hospital, Bad Saarow, Germany
3Institute of Medical Informatics, Charité—Universitätsmedizin Berlin, 10098 Berlin, Germany
4Department of Urology, Lukas Hospital Neuss, Germany
5Department of Urology, Charité—Universitätsmedizin Berlin, 10098 Berlin, Germany

Received 9 April 2012; Accepted 13 May 2012

Academic Editors: P.-L. Chang, J. H. Ku, and T. Okamura

Copyright © 2012 Thorsten H. Ecke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Lilja, D. Ulmert, and A. J. Vickers, “Prostate-specific antigen and prostate cancer: prediction, detection and monitoring,” Nature Reviews Cancer, vol. 8, no. 4, pp. 268–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. F. H. Schröder, P. van der Maas, P. Beemsterboer et al., “Evaluation of the digital rectal examination as a screening test for prostate cancer,” Journal of the National Cancer Institute, vol. 90, no. 23, pp. 1817–1823, 1998. View at Scopus
  3. C. K. Naughton, D. S. Smith, P. A. Humphrey, W. J. Catalona, and D. W. Keetch, “Clinical and pathologic tumor characteristics of prostate cancer as a function of the number of biopsy cores: a retrospective study,” Journal of Urology, vol. 52, no. 5, pp. 808–813, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. T. J. Polascik, J. E. Oesterling, and A. W. Partin, “Prostate specific antigen: a decade of discovery—what we have learned and where we are going,” Journal of Urology, vol. 162, no. 2, pp. 293–306, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. C. T. Lee and P. T. Scardino, “Percent free prostate-specific antigen for first-time prostate biopsy.,” Journal of Urology, vol. 57, no. 4, pp. 594–598, 2001. View at Scopus
  6. C. Stephan, M. Lein, K. Jung, D. Schnorr, and S. A. Loening, “Re: editorial: can prostate specific antigen derivatives reduce the frequency of unnecessary prostate biopsies?” The Journal of Urology, vol. 157, no. 4, article 1371, 1997. View at Scopus
  7. M. Garzotto, R. G. Hudson, L. Peters et al., “Predictive modeling for the presence of prostate carcinoma using clinical, laboratory, and ultrasound parameters in patients with prostate specific antigen levels ≤ 10 ng/mL,” Cancer, vol. 98, no. 7, pp. 1417–1422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. P. I. Karakiewicz, S. Benayoun, M. W. Kattan et al., “Development and validation of a nomogram predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen,” Journal of Urology, vol. 173, no. 6, pp. 1930–1934, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Eastham, R. May, J. L. Robertson, O. Sartor, and M. W. Kattan, “Development of a nomogram that predicts the probability of a positive prostate biopsy in men with an abnormal digital rectal examination and a prostate-specific antigen between 0 and 4 ng/mL,” Journal of Urology, vol. 54, no. 4, pp. 709–713, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Stephan, H. Cammann, A. Semjonow et al., “Multicenter evaluation of an artificial neural network to increase the prostate cancer detection rate and reduce unnecessary biopsies,” Clinical Chemistry, vol. 48, no. 8, pp. 1279–1287, 2002. View at Scopus
  11. P. Finne, R. Finne, A. Auvinen et al., “Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network,” Journal of Urology, vol. 56, no. 3, pp. 418–422, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. R. J. Babaian, H. Fritsche, A. Ayala et al., “Performance of a neural network in detecting prostate cancer in the prostate-specific antigen reflex range of 2.5 to 4.0 ng/mL,” Journal of Urology, vol. 56, no. 6, pp. 1000–1006, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. F. K. H. Chun, P. I. Karakiewicz, A. Briganti et al., “A critical appraisal of logistic regression-based nomograms, artificial neural networks, classification and regression-tree models, look-up tables and risk-group stratification models for prostate cancer,” BJU International, vol. 99, no. 4, pp. 794–800, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Schröder and M. W. Kattan, “The comparability of models for predicting the risk of a positive prostate biopsy with prostate-specific antigen alone: a systematic review,” European Urology, vol. 54, no. 2, pp. 274–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Stephan, H. Cammann, H. A. Meyer, M. Lein, and K. Jung, “PSA and new biomarkers within multivariate models to improve early detection of prostate cancer,” Cancer Letters, vol. 249, no. 1, pp. 18–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. F. K. H. Chun, M. Graefen, A. Briganti et al., “Initial biopsy outcome prediction-head-to-head comparison of a logistic regression-based nomogram versus artificial neural network,” European Urology, vol. 51, no. 5, pp. 1236–1243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Stephan, H.-A. Meyer, H. Cammann, M. Lein, S. A. Loening, and K. Jung, “Re: Felix K.-H. Chun, Markus Graefen, Alberto Briganti, Andrea Gallina, Julia Hopp, Michael W. Kattan, Hartwig Huland and Pierre I. Karakiewicz. Initial biopsy outcome prediction-head-to-head comparison of a logistic regression-based nomogram versus artificial neural network. Eur Urol 2007; 51: 1236-43,” European Urology, vol. 51, no. 5, pp. 1446–1447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kawakami, N. Numao, Y. Okubo et al., “Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy,” European Urology, vol. 54, no. 3, pp. 601–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Stephan, H. Cammann, H. A. Meyer et al., “An artificial neural network for five different assay systems of prostate-specific antigen in prostate cancer diagnostics,” BJU International, vol. 102, no. 7, pp. 799–805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Utsumi, K. Kawamura, H. Suzuki et al., “External validation and head-to-head comparison of japanese and Western prostate biopsy nomograms using japanese data sets,” International Journal of Urology, vol. 16, no. 4, pp. 416–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Horninger, G. Bartsch, P. B. Snow, J. M. Brandt, and A. W. Partin, “The problem of cutoff levels in a screened population: appropriateness of informing screenees about their risk of having prostate carcinoma,” Cancer, vol. 91, no. 8, pp. 1667–1672, 2001. View at Scopus
  22. C. Stephan, K. Jung, H. Cammann et al., “An artificial neural network considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis: results of a 5-year investigation,” International Journal of Cancer, vol. 99, no. 3, pp. 466–473, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Greene, D. Page, and I. Fleming, American Joint Committee on Cancer Staging Manual, Springer, New York, NY, USA, 2002.
  24. T. H. Ecke, S. Gunia, P. Bartel, S. Hallmann, S. Koch, and J. Ruttloff, “Complications and risk factors of transrectal ultrasound guided needle biopsies of the prostate evaluated by questionnaire,” Urologic Oncology, vol. 26, no. 5, pp. 474–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Kairisto and A. Poola, “Software for illustrative presentation of basic clinical characteristics of laboratory tests—GraphROC for windows,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 55, supplement 222, pp. 43–60, 1995. View at Scopus
  26. W. J. Catalona, A. W. Partin, K. M. Slawin et al., “Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial,” Journal of the American Medical Association, vol. 279, no. 19, pp. 1542–1547, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Stephan, C. Xu, P. Finne et al., “Comparison of two different artificial neural networks for prostate biopsy indication in two different patient populations,” Journal of Urology, vol. 70, no. 3, pp. 596–601, 2007. View at Publisher · View at Google Scholar · View at Scopus