About this Journal Submit a Manuscript Table of Contents
ISRN Urology
Volume 2013 (2013), Article ID 157379, 22 pages
http://dx.doi.org/10.1155/2013/157379
Review Article

Robotic-Assisted Radical Prostatectomy after the First Decade: Surgical Evolution or New Paradigm

Department of Urology, University of California, Irvine, CA 92697, USA

Received 10 January 2013; Accepted 7 February 2013

Academic Editors: A. Fandella, C. D. Lallas, A. Papatsoris, and A. C. Thorpe

Copyright © 2013 Douglas W. Skarecky. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. V. Clayman, L. R. Kavoussi, N. J. Soper et al., “Laparoscopic nephrectomy: initial case report,” Journal of Urology, vol. 146, no. 2, pp. 278–282, 1991. View at Scopus
  2. W. W. Schuessler, P. C. Schulam, R. V. Clayman, and T. H. Vancaille, “Laparoscopic radical prostatectomy: initial case report,” Journal of Urology, vol. 147, no. 1, pp. 246–248, 1992.
  3. B. Guillonneau, X. Cathelineau, E. Barret, F. Rozet, and G. Vallancien, “Radical laparoscopic prostatectomy: early results in 28 cases,” Presse Medicale, vol. 27, no. 31, pp. 1570–1574, 1998. View at Scopus
  4. F. Jacob, L. Salomon, A. Hoznek et al., “Laparoscopic radical prostatectomy: preliminary results,” European Urology, vol. 37, no. 5, pp. 615–620, 2000. View at Scopus
  5. J. Rassweiler, L. Sentker, O. Seemann, M. Hatzinger, C. Stock, and T. Frede, “Heilbronn laparoscopic radical prostatectomy: technique and results after 100 cases,” European Urology, vol. 40, no. 1, pp. 54–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. B. Basillote, T. E. Ahlering, D. W. Skarecky, D. I. Lee, and R. V. Clayman, “Laparoscopic radical prostatectomy: review and assessment of an emerging technique,” Surgical Endoscopy and Other Interventional Techniques, vol. 18, no. 12, pp. 1694–1711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Binder and W. Kramer, “Robotically-assisted laparoscopic radical prostatectomy,” BJU International, vol. 87, no. 4, pp. 408–410, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Pasticier, J. B. W. Rietbergen, B. Guillonneau, G. Fromont, M. Menon, and G. Vallancien, “Robotically assisted laparoscopic radical prostatectomy: feasibility study in men,” European Urology, vol. 40, no. 1, pp. 70–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Rassweiler, T. Frede, O. Seemann, C. Stock, and L. Sentker, “Telesurgical laparoscopic radical prostatectomy: initial experience,” European Urology, vol. 40, no. 1, pp. 75–83, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Menon, A. Tewari, B. Baize, B. Guillonneau, and G. Vallancien, “Prospective comparison of radical retropubic prostatectomy and robot-assisted anatomic prostatectomy: the Vattikuti Urology Institute experience,” Urology, vol. 60, no. 5, pp. 864–868, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. T. Gettman, A. Hoznek, L. Salomon et al., “Laparoscopic radical prostatectomy: description of the extraperitoneal approach using the da Vinci robotic system,” Journal of Urology, vol. 170, no. 2, pp. 416–419, 2003. View at Scopus
  12. J. V. Joseph, R. Rosenbaum, R. Madeb, E. Erturk, and H. R. H. Patel, “Robotic extraperitoneal radical prostatectomy: an alternative approach,” Journal of Urology, vol. 175, no. 3, pp. 945–951, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Atug, E. P. Castle, M. Woods, S. K. Srivastav, R. Thomas, and R. Davis, “Transperitoneal versus extraperitoneal robotic-assisted radical prostatectomy: is one better than the other?” Urology, vol. 68, no. 5, pp. 1077–1081, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Hoznek, P. Antiphon, T. Borkowski et al., “Assessment of surgical technique and perioperative morbidity associated with extraperitoneal versus transperitoneal laparoscopic radical prostatectomy,” Urology, vol. 61, no. 3, pp. 617–622, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Menon, A. Shrivastava, S. Kaul et al., “Vattikuti Institute prostatectomy: contemporary technique and analysis of results,” European Urology, vol. 51, no. 3, pp. 648–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Van Appledorn, D. Bouchier-Hayes, D. Agarwal, and A. J. Costello, “Robotic laparoscopic radical prostatectomy: setup and procedural techniques after 150 cases,” Urology, vol. 67, no. 2, pp. 364–367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Guillonneau and G. Vallancien, “Laparoscopic radical prostatectomy: the Montsouris experience,” Journal of Urology, vol. 163, no. 2, pp. 418–422, 2000. View at Scopus
  18. J. Rassweiler, A. A. Wagner, M. Moazin et al., “Anatomic nerve-sparing laparoscopic radical prostatectomy: comparison of retrograde and antegrade techniques,” Urology, vol. 68, no. 3, pp. 587–591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. I. Lee, L. Eichel, D. W. Skarecky, and T. E. Ahlering, “Robotic laparoscopic radical prostatectomy with a single assistant,” Urology, vol. 63, no. 6, pp. 1172–1175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. D. L. Pick, D. I. Lee, D. W. Skarecky, and T. E. Ahlering, “Anatomic guide for port placement for DaVinci robotic radical prostatectomy,” Journal of Endourology, vol. 18, no. 6, pp. 572–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Montorsi, T. G. Wilson, R. C. Rosen et al., “Best practices in robot-assisted radical prostatectomy: recommendations of the Pasadena consensus panel,” European Urology, vol. 62, no. 3, pp. 368–381, 2012. View at Publisher · View at Google Scholar
  22. G. Novara, V. Ficarra, S. Mocellin et al., “Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy,” European Urology, vol. 62, no. 3, pp. 382–404, 2012. View at Publisher · View at Google Scholar
  23. V. Ficarra, G. Novara, R. C. Rosen et al., “Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy,” European Urology, vol. 62, no. 3, pp. 405–417, 2012. View at Publisher · View at Google Scholar
  24. V. Ficarra, G. Novara, T. E. Ahlering et al., “Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy,” European Urology, vol. 62, no. 3, pp. 418–430, 2012. View at Publisher · View at Google Scholar
  25. J. Y. Lee, D. W. Skarecky, and T. E. Ahlering, “Robotic-assisted radical prostatectomy section 6,” in Smith’s Textbook of Endourology, A. Smith, G. Badlani, G. Preminger, and L. Kavoussi, Eds., chapter 91, pp. 1119–1134, Blackwell, 3rd edition, 2012.
  26. D. G. Murphy, A. Bjartell, V. Ficarra et al., “Downsides of robot-assisted laparoscopic radical prostatectomy: limitations and complications,” European Urology, vol. 57, no. 5, pp. 735–746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. D. Herrell and J. A. Smith, “Robotic-assisted laparoscopic prostatectomy: what is the learning curve?” Urology, vol. 66, no. 5, pp. 105–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Rodriguez, D. Skarecky, N. Narula, and T. E. Ahlering, “Prostate volume estimation using the ellipsoid formula consistently underestimates actual gland size,” Journal of Urology, vol. 179, no. 2, pp. 501–503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. S. Finley, E. Rodriguez, and T. E. Ahlering, “Combined inguinal hernia repair with prosthetic mesh during transperitoneal robot assisted laparoscopic radical prostatectomy: a 4-year experience,” Journal of Urology, vol. 178, no. 4, pp. 1296–1300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Beck, D. Skarecky, K. Osann, R. Juarez, and T. E. Ahlering, “Transverse versus vertical camera port incision in robotic radical prostatectomy: effect on incisional hernias and cosmesis,” Urology, vol. 78, no. 3, pp. 586–590, 2011. View at Publisher · View at Google Scholar
  31. J. F. Borin, D. W. Skarecky, N. Narula, and T. E. Ahlering, “Impact of urethral stump length on continence and positive surgical margins in robot-assisted laparoscopic prostatectomy,” Urology, vol. 70, no. 1, pp. 173–177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. T. E. Ahlering, L. Eichel, R. A. Edwards, D. I. Lee, and D. W. Skarecky, “Robotic radical prostatectomy: a technique to reduce pT2 positive margins,” Urology, vol. 64, no. 6, pp. 1224–1228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. S. Finley, L. Deane, E. Rodriguez et al., “Anatomic excision of anterior prostatic fat at radical prostatectomy: implications for pathologic upstaging,” Urology, vol. 70, no. 5, pp. 1000–1003, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. F. Van Velthoven, T. E. Ahlering, A. Peltier, D. W. Skarecky, and R. V. Clayman, “Technique for laparoscopic running urethrovesical anastomosis: the single knot method,” Urology, vol. 61, no. 4, pp. 699–702, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. T. E. Ahlering, L. Eichel, D. Chou, and D. W. Skarecky, “Feasibility study for robotic radical prostatectomy cautery-free neurovascular bundle preservation,” Urology, vol. 65, no. 5, pp. 994–997, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. I. S. Gill, O. Ukimura, M. Rubinstein et al., “Lateral pedicle control during laparoscopic radical prostatectomy: refined technique,” Urology, vol. 65, no. 1, pp. 23–27, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Rocco, L. Carmignani, P. Acquati et al., “Restoration of posterior aspect of rhabdosphincter shortens continence time after radical retropubic prostatectomy,” Journal of Urology, vol. 175, no. 6, pp. 2201–2206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. Ong, L. M. Su, I. Varkarakis et al., “Nerve sparing radical prostatectomy: effects of hemostatic energy sources on the recovery of cavernous nerve function in a canine model,” Journal of Urology, vol. 172, no. 4, pp. 1318–1322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Beck, D. W. Skarecky, S. D. Miller, and T. E. Ahlering, “Tension adjustable stitch for athermal neurovascular bundle preservation in robotic radical prostatectomy,” Journal of Endourology, vol. 24, no. 7, pp. 834–837, 2012.
  40. V. Ficarra, G. Novara, W. Artibani et al., “Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies,” European Urology, vol. 55, no. 5, pp. 1037–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. V. R. Patel, K. J. Palmer, G. Coughlin, and S. Samavedi, “Robot-assisted laparoscopic radical prostatectomy: perioperative outcomes of 1500 cases,” Journal of Endourology, vol. 22, no. 10, pp. 2299–2305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. P. Dorin, S. Daneshmand, M. A. Lassoff, J. Cai, D. G. Skinner, and G. Lieskovsky, “Long-term outcomes of open radical retropubic prostatectomy for clinically localized prostate cancer in the prostate-specific antigen era,” Urology, vol. 79, no. 3, pp. 626–631, 2012. View at Publisher · View at Google Scholar
  43. G. Novara, V. Ficarra, R. C. Rosen et al., “Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy,” European Urology, vol. 62, no. 3, pp. 431–452, 2012. View at Publisher · View at Google Scholar
  44. A. Tewari, P. Sooriakumaran, D. A. Bloch, U. Seshadri-Kreaden, A. E. Hebert, and P. Wiklund, “Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy,” European Urology, vol. 62, no. 1, pp. 1–15, 2012. View at Publisher · View at Google Scholar
  45. P. K. Agarwal, J. Sammon, A. Bhandari et al., “Safety profile of robot-assisted radical prostatectomy: a standardized report of complications in 3317 patients,” European Urology, vol. 59, no. 5, pp. 684–698, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. C. Ou, C. R. Yang, J. Wang et al., “The learning curve for reducing complications of robotic-assisted laparoscopic radical prostatectomy by a single surgeon,” BJU International, vol. 108, no. 3, pp. 420–425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Kirby, K. Patil, P. Amoroso, B. Challacombe, and P. Dasgupta, “Avoiding and dealing with the complications of robot-assisted laparoscopic radical prostatectomy,” BJU International, vol. 106, no. 11, pp. 1567–1569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. A. Goldstraw, B. J. Challacombe, K. Patil, P. Amoroso, P. Dasgupta, and R. S. Kirby, “Overcoming the challenges of robot-assisted radical prostatectomy,” Prostate Cancer and Prostatic Diseases, vol. 15, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar
  49. M. Liss, D. W. Skarecky, B. Morales, K. Osann, and T. E. Ahlering, “Preventing complications of robot-assisted radical prostatectomy,” Urology, vol. 81, no. 2, pp. 319–323, 2013.
  50. P. C. Walsh, “Anatomic radical prostatectomy: evolution of the surgical technique,” Journal of Urology, vol. 160, no. 6, pp. 2418–2424, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. W. K. Lau, M. L. Blute, D. G. Bostwick, A. L. Weaver, T. J. Sebo, and H. Zincke, “Intraoperative and postoperative complications of radical retropubic prostatectomy in a consecutive series of 1,000 cases,” Journal of Urology, vol. 166, no. 5, pp. 1729–1733, 2001. View at Scopus
  52. W. J. Catalona, G. F. Carvalhal, D. E. Mager, and D. S. Smith, “Potency, continence and complication rates in 1,870 consecutive radical retropubic prostatectomies,” Journal of Urology, vol. 162, no. 2, pp. 433–438, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. M. A. Liss, A. Lusch, B. Morales et al., “Robot-assisted radical prostatectomy: 5-year oncological and biochemical outcomes,” Journal of Urology, vol. 188, no. 6, pp. 2205–2211, 2012. View at Publisher · View at Google Scholar
  54. D. S. Yee, T. E. Ahlering, J. Gelman, and D. W. Skarecky, “Fossa navicularis strictures due to 22F catheters used in robotic radical prostatectomy,” JSLS, vol. 11, no. 3, pp. 321–325, 2007. View at Scopus
  55. S. D. Kundu, K. A. Roehl, S. E. Eggener, J. A. V. Antenor, M. Han, and W. J. Catalona, “Potency, continence and complications in 3,477 consecutive radical retropubic prostatectomies,” Journal of Urology, vol. 172, no. 6, pp. 2227–2231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. J. A. Halm, H. Lip, P. I. Schmitz, and J. Jeekel, “Incisional hernia after upper abdominal surgery: a randomised controlled trial of midline versus transverse incision,” Hernia, vol. 13, no. 3, pp. 275–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. R. Brown and P. B. Goodfellow, “Transverse verses midline incisions for abdominal surgery,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD005199, 2005. View at Scopus
  58. D. W. Skarecky, M. Brenner, S. S. Rajan et al., “Zero positive surgical margins after radical prostatectomy: is the end in sight?” Expert Review of Medical Devices, vol. 5, no. 6, pp. 709–717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Swindle, J. A. Eastham, M. Ohori et al., “Do margins matter? The prognostic significance of positive surgical margins in radical prostatectomy specimens,” Journal of Urology, vol. 174, no. 3, pp. 903–907, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. T. A. Stamey, J. E. McNeal, C. M. Yemoto, B. M. Sigal, and I. M. Johnstone, “Biological determinants of cancer progression in men with prostate cancer,” JAMA, vol. 281, no. 15, pp. 1395–1400, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Graefen, J. Noldus, U. Pichlmeier et al., “Early prostate-specific antigen relapse after radical retropubic prostatectomy: prediction on the basis of preoperative and postoperative tumor characteristics,” European Urology, vol. 36, no. 1, pp. 21–30, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. J. A. Wieder and M. S. Soloway, “Incidence, etiology, location, prevention and treatment of positive surgical margins after radical prostatectomy for prostate cancer,” Journal of Urology, vol. 160, no. 2, pp. 299–315, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. F. J. Bianco, P. T. Scardino, and J. A. Eastham, “Radical prostatectomy: long-term cancer control and recovery of sexual and urinary function (“trifecta”),” Urology, vol. 66, no. 5, pp. 83–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. A. J. Stephenson, P. T. Scardino, J. A. Eastham et al., “Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy,” Journal of Clinical Oncology, vol. 23, no. 28, pp. 7005–7012, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Ohori and P. T. Scardino, “Localized prostate cancer,” Current Problems in Surgery, vol. 39, no. 9, pp. 843–957, 2002. View at Scopus
  66. P. I. Karakiewicz, J. A. Eastham, M. Graefen et al., “Prognostic impact of positive surgical margins in surgically treated prostate cancer: multi-institutional assessment of 5831 patients,” Urology, vol. 66, no. 6, pp. 1245–1250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. C. R. Pound, A. W. Partin, M. A. Eisenberger, D. W. Chan, J. D. Pearson, and P. C. Walsh, “Natural history of progression after PSA elevation following radical prostatectomy,” JAMA, vol. 281, no. 17, pp. 1591–1597, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Han, A. W. Partin, C. R. Pound, J. I. Epstein, and P. C. Walsh, “Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy: the 15-year Johns Hopkins experience,” Urologic Clinics of North America, vol. 28, no. 3, pp. 555–565, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Menon, M. Bhandari, N. Gupta et al., “Biochemical recurrence following robot-assisted radical prostatectomy: analysis of 1384 patients with a median 5-year follow-up,” European Urology, vol. 58, no. 6, pp. 838–846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Sooriakumaran, L. Haendler, T. Nyberg, et al., “Biochemical recurrence after robot-assisted radical prostatectomy in a european single-centre cohort with a minimum follow-up time of 5 years,” European Urology, vol. 62, no. 5, pp. 768–774, 2012. View at Publisher · View at Google Scholar
  71. N. Suardi, V. Ficarra, P. Willemsen et al., “Long-term biochemical recurrence rates after robot-assisted radical prostatectomy: analysis of a single-center series of patients with a minimum follow-up of 5 years,” Urology, vol. 79, no. 1, pp. 133–138, 2012. View at Publisher · View at Google Scholar
  72. P. Sooriakumaran, I. Heus, S. F. Shariat, et al., “Comparative analyses of surgical modalities for the management of prostate cancer: a multi-institutional study of positive surgical margin rates on 22,403 patients operated on in the new millennium,” European Urology Supplements, vol. 11, no. 1, pp. U845–A876, 2012.
  73. A. Lusch, D. W. Skarecky, and T. E. Ahlering, “Outcomes after robot-assisted radical prostatectomy,” in Robotic Urology, H. John and P. Wiklund, Eds., chapter 30, p. 20, Springer, Heidelberg, Germany, 2nd edition, 2013.
  74. T. E. Ahlering, A. Gordon, B. Morales, and D. W. Skarecky, “Preserving continence during robotic prostatectomy,” Current Urology Reports, vol. 14, no. 1, pp. 52–58, 2013.
  75. M. A. Liss, K. Osann, N. Canvasser et al., “Continence definition after radical prostatectomy using urinary quality of life: evaluation of patient reported validated questionnaires,” Journal of Urology, vol. 183, no. 4, pp. 1464–1468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Pick, D. W. Skarecky, K. Osann, et al., “The impact of cavernosal nerve preservation on continence following robotic radical prostatectomy,” BJU International, vol. 108, no. 9, pp. 1492–1496, 2011.
  77. S. Shikanov, V. Desai, A. Razmaria, G. P. Zagaja, and A. L. Shalhav, “Robotic radical prostatectomy for elderly patients: probability of achieving continence and potency 1 year after surgery,” Journal of Urology, vol. 183, no. 5, pp. 1803–1807, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. D. T. Tzou, B. L. Dalkin, B. A. Christopher, and H. Cui, “The failure of a nerve sparing template to improve urinary continence after radical prostatectomy: attention to study design,” Urologic Oncology, vol. 27, no. 4, pp. 358–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. T. E. Ahlering, V. Patel, D. I. Lee, and D. W. Skarecky, “Multi-institutional review of complications after robot-assisted laparoscopic prostatectomy (RLP),” Journal of Endourology, vol. 20, supplement 1, pp. VP8–VP11, 2006.
  80. M. Menon, F. Muhletaler, M. Campos, and J. O. Peabody, “Assessment of early continence after reconstruction of the periprostatic tissues in patients undergoing computer assisted (robotic) prostatectomy: results of a 2 group parallell randomized control trial,” Journal of Urology, vol. 180, no. 3, pp. 1018–1023, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. P. C. Walsh, P. Marschke, D. Ricker, and A. L. Burnett, “Patient-reported urinary continence and sexual function after anatomic radical prostatectomy,” Urology, vol. 55, no. 1, pp. 58–61, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. J. T. Wei and J. E. Montie, “Comparison of patient's and physician's ratings of urinary incontinence following radical prostatectomy,” Seminars in Urologic Oncology, vol. 18, no. 1, pp. 76–80, 2000. View at Scopus
  83. D. J. Lee, P. Cheetham, and K. K. Badani, “Predictors of early urinary continence after robotic prostatectomy,” The Canadian Journal of Urology, vol. 17, no. 3, pp. 5200–5205, 2010. View at Scopus
  84. T. E. Ahlering, L. Eichel, R. Edwards, and D. W. Skarecky, “Impact of obesity on clinical outcomes in robotic prostatectomy,” Urology, vol. 65, no. 4, pp. 740–744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. B. A. Link, R. Nelson, D. Y. Josephson et al., “The impact of prostate gland weight in robot assisted laparoscopic radical prostatectomy,” Journal of Urology, vol. 180, no. 3, pp. 928–932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. E. P. Castle, F. Atug, M. Woods, R. Thomas, and R. Davis, “Impact of body mass index on outcomes after robot assisted radical prostatectomy,” World Journal of Urology, vol. 26, no. 1, pp. 91–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. D. W. Skarecky, B. Morales, A. Chang, and T. E. Ahlering, “Simple prediction method of return to pad-free continence for men undergoing Robotic Radical Prostatectomy (RARP),” Journal of Endourology, vol. 25, no. 9, pp. 1451–1455, 2011.
  88. C. Twiss, S. Martin, R. Shore, and H. Lepor, “A continence index predicts the early return of urinary continence after radical retropubic prostatectomy,” Journal of Urology, vol. 164, no. 4, pp. 1241–1247, 2000. View at Scopus
  89. M. Ates, D. Teber, A. S. Gozen et al., “A new Postoperative Predictor of time to urinary continence after Laparosocpic radical prostatectomy: the urine loss ratio,” European Urology, vol. 52, no. 1, pp. 178–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Van Kampen, I. Geraerts, W. De Weerdt, and H. Van Poppel, “An easy prediction of urinary incontinence duration after retropubic radical prostatectomy based on urine loss the first day after catheter withdrawal,” Journal of Urology, vol. 181, no. 6, pp. 2641–2646, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. D. S. Finley, K. Osann, D. Skarecky, and T. E. Ahlering, “Hypothermic nerve sparing radical prostatectomy: rationale, feasibility, and impact of early continence,” Urology, vol. 73, no. 4, pp. 691–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. D. S. Finley, A. Chang, B. Morales, K. Osann, D. Skarecky, and T. Ahlering, “Impact of regional hypothermia on urinary continence and potency after robot-assisted radical prostatectomy,” Journal of Endourology, vol. 24, no. 7, pp. 1111–1116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. D. S. Finley, K. Osann, A. Chang, R. Santos, D. Skarecky, and T. E. Ahlering, “Hypothermic robotic radical prostatectomy: impact on continence,” Journal of Endourology, vol. 23, no. 9, pp. 1443–1450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. K. H. Polderman, “Mechanisms of action, physiological effects, and complications of hypothermia,” Critical Care Medicine, vol. 37, no. 7, pp. S186–S202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. S. M. Lee, H. Zhao, C. M. Maier, and G. K. Steinberg, “The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 9, pp. 1589–1600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. J. T. Povlishock, A. Buki, H. Koiziumi, T. Stone, and D. O. Okonkwo, “Initiating mechanisms involved in the pathobiology of traumatically induced axonal injury and interventions targeted at blunting their progression,” Acta Neurochirurgica, Supplement, vol. 1999, no. 73, pp. 15–20, 1999. View at Scopus
  97. M. Adachi, O. Sohma, S. Tsuneishi, S. Takada, and H. Nakamura, “Combination effect of systemic hypothermia and caspase inhibitor administration against hypoxic-ischemic brain damage in neonatal rats,” Pediatric Research, vol. 50, no. 5, pp. 590–595, 2001. View at Scopus
  98. X. H. Ning, S. H. Chen, C. S. Xu et al., “Selected contribution: hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis,” Journal of Applied Physiology, vol. 92, no. 5, pp. 2200–2207, 2002. View at Scopus
  99. L. Xu, M. A. Yenari, G. K. Steinberg, and R. G. Giffard, “Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 1, pp. 21–28, 2002. View at Scopus
  100. A. K. F. Liou, R. S. Clark, D. C. Henshall, X. M. Yin, and J. Chen, “To die or not to die foyr neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways,” Progress in Neurobiology, vol. 69, no. 2, pp. 103–142, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. K. Chatzipanteli, Y. Yanagawa, A. E. Marcillo, S. Kraydieh, R. P. Yezierski, and W. D. Dietrich, “Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats,” Journal of Neurotrauma, vol. 17, no. 4, pp. 321–332, 2000. View at Scopus
  102. R. Busto, W. D. Dietrich, M. Globus, I. Valdes, P. Scheinberg, and M. D. Ginsberg, “Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 7, no. 6, pp. 729–738, 1987. View at Scopus
  103. M. Aibiki, S. Maekawa, S. Ogura, Y. Kinoshita, N. Kawai, and S. Yokono, “Effect of moderate hypothermia on systemic and internal jugular plasma IL-6 levels after traumatic brain injury in humans,” Journal of Neurotrauma, vol. 16, no. 3, pp. 225–232, 1999. View at Scopus
  104. W. D. Dietrich, K. Chatzipanteli, E. Vitarbo, K. Wada, and K. Kinoshita, “The role of inflammatory processes in the pathophysiology and treatment of brain and spinal cord trauma,” Acta Neurochirurgica. Supplement, vol. 89, pp. 69–74, 2004. View at Scopus
  105. E. Suehiro, H. Fujisawa, T. Akimura et al., “Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy,” Journal of Neurotrauma, vol. 21, no. 12, pp. 1706–1711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Hildebrand, M. van Griensven, P. Giannoudis et al., “Impact of hypothermia on the immunologic response after trauma and elective surgery,” Surgical Technology International, vol. 14, pp. 41–50, 2005. View at Scopus
  107. P. C. Walsh and P. J. Donker, “Impotence following radical prostatectomy: insight into etiology and prevention,” Journal of Urology, vol. 128, no. 3, pp. 492–497, 1982. View at Scopus
  108. J. Breza, S. R. Aboseif, B. R. Orvis, T. F. Lue, and E. A. Tanagho, “Detailed anatomy of penile neurovascular structures: surgical significance,” Journal of Urology, vol. 141, no. 2, pp. 437–443, 1989. View at Scopus
  109. S. Yucel and L. S. Baskin, “Identification of communicating branches among the dorsal, perineal and cavernous nerves of the penis,” Journal of Urology, vol. 170, no. 1, pp. 153–158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Tewari, A. Takenaka, E. Mtui et al., “The proximal neurovascular plate and the tri-zonal neural architecture around the prostate gland: importance in the athermal robotic technique of nerve-sparing prostatectomy,” BJU International, vol. 98, no. 2, pp. 314–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Tekenaka, M. Kawada, G. Murakami, S. Hisasue, T. Tsukamoto, and M. Fujisawa, “Interindividual variation in distribution of extramural ganglion cells in the male pelvis: a semi-quantitative and immunohistochemical study concerning nerve-sparing pelvic surgery,” European Urology, vol. 48, no. 1, pp. 46–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. A. J. Costello, M. Brooks, and O. J. Cole, “Anatomical studies of the neurovascular bundle and cavernosal nerves,” BJU International, vol. 94, no. 7, pp. 1071–1076, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Menon, S. Kaul, A. Bhandari, A. Shrivastava, A. Tewari, and A. Hemal, “Potency following robotic radical prostatectomy: a questionnaire based analysis of outcomes after conventional nerve sparing and prostatic fascia sparing techniques,” Journal of Urology, vol. 174, no. 6, pp. 2291–2296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. H. J. Seddon, “Three types of nerve injury,” Brain, vol. 66, no. 4, pp. 237–288, 1943. View at Publisher · View at Google Scholar · View at Scopus
  115. T. E. Ahlering, A. Costello, and D. W. Skarecky, “Antegrade Robot- Assisted Radical Prostatectomy: factors impacting potency preservation,” in Robotic Urology Edition, H. John and P. Wiklund, Eds., chapter 24, p. 20, Springer, Heidelberg, Germany, 2nd edition, 2013.
  116. T. E. Ahlering, D. Skarecky, and J. Borin, “Impact of cautery versus cautery-free preservation of neurovascular bundles on early return of potency,” Journal of Endourology, vol. 20, no. 8, pp. 586–589, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. T. E. Ahlering, L. Eichel, and D. Skarecky, “Evaluation of long-term thermal injury using cautery during nerve sparing robotic prostatectomy,” Urology, vol. 72, no. 6, pp. 1371–1374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. G. N. Box, A. G. Kaplan, E. Rodriguez et al., “Sacrifice of accessory pudendal arteries in normally potent men during robot-assisted radical prostatectomy does not impact potency,” Journal of Sexual Medicine, vol. 7, no. 1, pp. 298–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. T. E. Ahlering, L. Eichel, and D. Skarecky, “Rapid communication: early potency outcomes with cautery-free neurovascular bundle preservation with robotic laparoscopic radical prostatectomy,” Journal of Endourology, vol. 19, no. 6, pp. 715–718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. T. L. Smith and J. M. Smith, “Electrosurgery in otolaryngology-head and neck surgery: principles, advances, and complications,” Laryngoscope, vol. 111, no. 5, pp. 769–780, 2001. View at Scopus
  121. J. C. Lantis, F. M. Durville, R. Connolly, and S. D. Schwaitzberg, “Comparison of coagulation modalities in surgery,” Journal of Laparoendoscopic and Advanced Surgical Techniques, vol. 8, no. 6, pp. 381–394, 1998. View at Scopus
  122. J. Donzelli, J. P. Leonetti, R. D. Wurster, J. M. Lee, and M. R. I. Young, “Neuroprotection due to irrigation during bipolar cautery,” Archives of Otolaryngology, vol. 126, no. 2, pp. 149–153, 2000. View at Scopus
  123. A. Mandhani, P. J. Dorsey, R. Ramanathan et al., “Real time monitoring of temperature changes in neurovascular bundles during robotic radical prostatectomy: thermal map for nerve-sparing radical prostatectomy,” Journal of Endourology, vol. 22, no. 10, pp. 2313–2317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. F. Khan, E. Rodriguez, D. S. Finley, D. W. Skarecky, and T. E. Ahlering, “Spread of thermal energy and heat sinks: implications for nerve-sparing robotic prostatectomy,” Journal of Endourology, vol. 21, no. 10, pp. 1195–1198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. K. C. Zorn, N. Bhojani, G. Gautam et al., “Application of ice cold irrigation during vascular pedicle control of robot-assisted radical prostatectomy: enSeal instrument cooling to reduce collateral thermal tissue damage,” Journal of Endourology, vol. 24, no. 12, pp. 1991–1996, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. T. E. Ahlering, A. G. Kaplan, D. S. Yee, and D. W. Skarecky, “Prostate weight and early potency in robot-assisted radical prostatectomy,” Urology, vol. 72, no. 6, pp. 1263–1268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. T. E. Ahlering, E. Rodriguez, and D. W. Skarecky, “Overcoming obstacles: nerve-sparing issues in radical prostatectomy,” Journal of Endourology, vol. 22, no. 4, pp. 745–749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. D. S. Finley, E. Rodriguez, D. W. Skarecky, and T. E. Ahlering, “Quantitative and qualitative analysis of the recovery of potency after radical prostatectomy: effect of unilateral vs bilateral nerve sparing,” BJU International, vol. 104, no. 10, pp. 1484–1489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. P. C. Walsh, J. I. Epstein, and F. C. Lowe, “Potency following radical prostatectomy with wide unilateral excision of the neurovascular bundle,” Journal of Urology, vol. 138, no. 4, pp. 823–827, 1987. View at Scopus
  130. S. L. Goldenberg, T. E. Ahlering, N. C. Buchan, and D. W. Skarecky, “Transitioning from Open to Robotic Radical Prostatectomy-A look back,” in Robotic Urologic Surgery, V. Patel, Ed., chapter 10, pp. 89–105, Springer, London, UK, 2nd edition, 2012.
  131. T. J. Guzzo and M. K. Gonzalgo, “Robotic surgical training of the urologic oncologist,” in Urologic Oncology, vol. 27, pp. 214–217, 2009.