About this Journal Submit a Manuscript Table of Contents
ISRN Urology
Volume 2013 (2013), Article ID 970370, 8 pages
http://dx.doi.org/10.1155/2013/970370
Research Article

Insulin Deprivation Decreases Caspase-Dependent Apoptotic Signaling in Cultured Rat Sertoli Cells

CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Avenue Infante D. Henrique, 6201-506 Covilhã, Portugal

Received 1 July 2013; Accepted 12 September 2013

Academic Editors: A. Fandella, J. H. Ku, A. Papatsoris, and C. Podlasek

Copyright © 2013 T. R. Dias et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Su, D. D. Mruk, and C. Y. Cheng, “Drug transporters, the blood-testis barrier, and spermatogenesis,” Journal of Endocrinology, vol. 208, no. 3, pp. 207–223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Mackay, “Gonadal development in mammals at the cellular and molecular levels,” International Review of Cytology, vol. 200, pp. 47–99, 2000. View at Scopus
  3. L. Rato, M. G. Alves, S. Socorro, A. I. Duarte, J. E. Cavaco, and P. F. Oliveira, “Metabolic regulation is important for spermatogenesis,” Nature Reviews Urology, vol. 9, no. 6, pp. 330–338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Alves, L. Rato, R. A. Carvalho, P. I. Moreira, S. Socorro, and P. F. Oliveira, “Hormonal control of Sertoli cell metabolism regulates spermatogenesis,” Cellular and Molecular Life Sciences, vol. 70, no. 5, pp. 777–793, 2013.
  5. J. A. Grootegoed, R. B. Oonk, R. Jansen, and H. J. van der Molen, “Metabolism of radiolabelled energy-yielding substrates by rat Sertoli cells,” Journal of Reproduction and Fertility, vol. 77, no. 1, pp. 109–118, 1986. View at Scopus
  6. R. Robinson and I. B. Fritz, “Metabolism of glucose by Sertoli cells in culture,” Biology of Reproduction, vol. 24, no. 5, pp. 1032–1041, 1981. View at Scopus
  7. J. M. Orth, G. L. Gunsalus, and A. A. Lamperti, “Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development,” Endocrinology, vol. 122, no. 3, pp. 787–794, 1988. View at Scopus
  8. R. M. Sharpe, C. McKinnell, C. Kivlin, and J. S. Fisher, “Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood,” Reproduction, vol. 125, no. 6, pp. 769–784, 2003. View at Scopus
  9. K. K. Shukla, A. A. Mahdi, and S. Rajender, “Apoptosis, spermatogenesis and male infertility,” Frontiers in Bioscience, vol. 4, pp. 746–754, 2012.
  10. M. O. Hengartner, “The biochemistry of apoptosis,” Nature, vol. 407, no. 6805, pp. 770–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Mallat and A. Tedgui, “Apoptosis in the vasculature: mechanisms and functional importance,” British Journal of Pharmacology, vol. 130, no. 5, pp. 947–962, 2000. View at Scopus
  12. Y. Arima, M. Nitta, S. Kuninaka et al., “Transcriptional blockade induces p53-dependent apoptosis associated with translocation of p53 to mitochondria,” The Journal of Biological Chemistry, vol. 280, no. 19, pp. 19166–19176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Miyashita and J. C. Reed, “Tumor suppressor p53 is a direct transcriptional activator of the human bax gene,” Cell, vol. 80, no. 2, pp. 293–299, 1995. View at Scopus
  14. M. H. Harris and C. B. Thompson, “The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability,” Cell Death and Differentiation, vol. 7, no. 12, pp. 1182–1191, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. R. M. Kluck, E. Bossy-Wetzel, D. R. Green, and D. D. Newmeyer, “The release of cytochrome c from mitochondria: a primary site for Bcl- 2 regulation of apoptosis,” Science, vol. 275, no. 5303, pp. 1132–1136, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. V. Heiden, N. S. Chandel, E. K. Williamson, P. T. Schumacker, and C. B. Thompson, “Bcl-x(L) regulates the membrane potential and volume homeostasis of mitochondria,” Cell, vol. 91, no. 5, pp. 627–637, 1997. View at Scopus
  17. A. Gross, J. Jockel, M. C. Wei, and S. J. Korsmeyer, “Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis,” The EMBO Journal, vol. 17, no. 14, pp. 3878–3885, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Li, D. Nijhawan, I. Budihardjo et al., “Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade,” Cell, vol. 91, no. 4, pp. 479–489, 1997. View at Scopus
  19. S. J. Riedl and G. S. Salvesen, “The apoptosome: signalling platform of cell death,” Nature Reviews Molecular Cell Biology, vol. 8, no. 5, pp. 405–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. C. Earnshaw, L. M. Martins, and S. H. Kaufmann, “Mammalian caspases: structure, activation, substrates, and functions during apoptosis,” Annual Review of Biochemistry, vol. 68, pp. 383–424, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. B. S. Majors, M. J. Betenbaugh, and G. G. Chiang, “Links between metabolism and apoptosis in mammalian cells: applications for anti-apoptosis engineering,” Metabolic Engineering, vol. 9, no. 4, pp. 317–326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Boussouar and M. Benahmed, “Lactate and energy metabolism in male germ cells,” Trends in Endocrinology and Metabolism, vol. 15, no. 7, pp. 345–350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Rato, M. G. Alves, S. Socorro, R. A. Carvalho, J. E. Cavaco, and P. F. Oliveira, “Metabolic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured in vitro,” Bioscience Reports, vol. 32, no. 1, pp. 61–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. P. F. Oliveira, M. G. Alves, L. Rato et al., “Influence of 5α-dihydrotestosterone and 17β-estradiol on human Sertoli cells metabolism,” International Journal of Andrology, vol. 34, no. 6, part 2, pp. e612–e620, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. G. Alves, S. Socorro, J. Silva, et al., “In vitro cultured human Sertoli cells secrete high amounts of acetate that is stimulated by 17β-estradiol and suppressed by insulin deprivation,” Biochimica et Biophysica Acta, vol. 1823, no. 8, pp. 1389–1394, 2012. View at Publisher · View at Google Scholar
  26. G. M. Reaven, “Banting lecture 1988. Role of insulin resistance in human disease,” Diabetes, vol. 37, no. 12, pp. 1595–1607, 1988. View at Scopus
  27. L. Rato, M. Alves, T. Dias, et al., “High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters,” Andrology, vol. 1, no. 3, pp. 495–504, 2013. View at Publisher · View at Google Scholar
  28. A. Rabinovitch and W. L. Suarez-Pinzon, “Cytokines and their roles in pancreatic islet β-cell destruction and insulin-dependent diabetes mellitus,” Biochemical Pharmacology, vol. 55, no. 8, pp. 1139–1149, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Amaral, A. J. Moreno, M. S. Santos, R. Seiça, and J. Ramalho-Santos, “Effects of hyperglycemia on sperm and testicular cells of Goto-Kakizaki and streptozotocin-treated rat models for diabetes,” Theriogenology, vol. 66, no. 9, pp. 2056–2067, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. la Vignera, R. Condorelli, E. Vicari, R. D'Agata, and A. E. Calogero, “Diabetes mellitus and minireview sperm parameters,” Journal of Andrology, vol. 33, no. 2, pp. 145–153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. P. F. Oliveira, M. Sousa, A. Barros, T. Moura, and A. R. da Costa, “Intracellular pH regulation in human Sertoli cells: role of membrane transporters,” Reproduction, vol. 137, no. 2, pp. 353–359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. D. Martins, M. G. Alves, V. L. Simões, et al., “Control of Sertoli cell metabolism by sex steroid hormones is mediated through modulation in glycolysis-related transporters and enzymes,” Cell Tissue Research, 2013. View at Publisher · View at Google Scholar
  33. K. Steger, R. Rey, S. Kliesch, F. Louis, G. Schleicher, and M. Bergmann, “Immunohistochemical detection of immature Sertoli cell markers in testicular tissue of infertile adult men: a preliminary study,” International Journal of Andrology, vol. 19, no. 2, pp. 122–128, 1996. View at Scopus
  34. C. Picado, J. C. Fernandez-Morata, M. Juan et al., “Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin- sensitive asthmatics,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 1, pp. 291–296, 1999. View at Scopus
  35. M. G. Alves, N. G. Machado, V. A. Sardão, R. A. Carvalho, and P. J. Oliveira, “Anti-apoptotic protection afforded by cardioplegic celsior and histidine buffer solutions to hearts subjected to ischemia and ischemia/reperfusion,” Journal of Cellular Biochemistry, vol. 112, no. 12, pp. 3872–3881, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. K. H. Vousden and D. P. Lane, “p53 in health and disease,” Nature Reviews Molecular Cell Biology, vol. 8, no. 4, pp. 275–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Raisova, A. M. Hossini, J. Eberle et al., “The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis,” Journal of Investigative Dermatology, vol. 117, no. 2, pp. 333–340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. M. W. Lee, I. Hirai, and H. G. Wang, “Caspase-3-mediated cleavage of Rad9 during apoptosis,” Oncogene, vol. 22, no. 41, pp. 6340–6346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. C. Reed, “Bcl-2 and the regulation of programmed cell death,” Journal of Cell Biology, vol. 124, no. 1, pp. 1–6, 1994. View at Scopus
  40. J. Yang, X. Liu, K. Bhalla et al., “Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked,” Science, vol. 275, no. 5303, pp. 1129–1132, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Shi, J. Chen, J. Yang, T. Pan, S. Zhang, and Z. Wang, “MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity,” Brain Research, vol. 1352, pp. 255–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Budihardjo, H. Oliver, M. Lutter, X. Luo, and X. Wang, “Biochemical pathways of caspase activation during apoptosis,” Annual Review of Cell and Developmental Biology, vol. 15, pp. 269–290, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Zou, R. Yang, J. Hao et al., “Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP,” The Journal of Biological Chemistry, vol. 278, no. 10, pp. 8091–8098, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Twiddy and K. Cain, “Caspase-9 cleavage, do you need it?” The Biochemical Journal, vol. 405, no. 1, pp. e1–e2, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. R. C. Taylor, S. P. Cullen, and S. J. Martin, “Apoptosis: controlled demolition at the cellular level,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 231–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. D. F. Cameron, F. T. Murray, and D. D. Drylie, “Interstitial compartment pathology and spermatogenic disruption in testes from impotent diabetic men,” Anatomical Record, vol. 213, no. 1, pp. 53–62, 1985. View at Scopus
  47. M. G. Alves, A. D. Martins, L. Rato, P. I. Moreira, S. Socorro, and P. F. Oliveira, “Molecular mechanisms beyond glucose transport in diabetes-related male infertility,” Biochimica et Biophysica Acta, vol. 1832, no. 5, pp. 626–635, 2013. View at Publisher · View at Google Scholar
  48. M. G. Alves, P. F. Oliveira, S. Socorro, and P. I. Moreira, “Impact of diabetes in blood-testis and blood-brain barriers: resemblances and differences,” Current Diabetes Reviews, vol. 8, no. 6, pp. 401–412, 2012.
  49. L. Chen, J. Jiang, C. Cheng et al., “p53 dependent and independent apoptosis induced by lidamycin in human colorectal cancer cells,” Cancer Biology and Therapy, vol. 6, no. 6, pp. 965–973, 2007. View at Scopus
  50. P. Baldi and A. D. Long, “A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes,” Bioinformatics, vol. 17, no. 6, pp. 509–519, 2001. View at Scopus
  51. “Genetic network analysis in light of massively parallel biological data acquisition,” in Pacific Symposium on Biocomputing, Z. Szallasi, Ed., Citeseer, 1999.
  52. I. Schmitz, S. Kirchhoff, and P. H. Krammer, “Regulation of death receptor-mediated apoptosis pathways,” International Journal of Biochemistry and Cell Biology, vol. 32, no. 11-12, pp. 1123–1136, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Vahsen, C. Candé, J.-J. Brière et al., “AIF deficiency compromises oxidative phosphorylation,” The EMBO Journal, vol. 23, no. 23, pp. 4679–4689, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. R. F. Epand, J.-C. Martinou, S. Montessuit, R. M. Epand, and C. M. Yip, “Direct evidence for membrane pore formation by the apoptotic protein Bax,” Biochemical and Biophysical Research Communications, vol. 298, no. 5, pp. 744–749, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Einat, P. Yuan, and H. K. Manji, “Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene: further support for the involvement of mitochondrial function in anxiety disorders,” Behavioural Brain Research, vol. 165, no. 2, pp. 172–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Köhler, S. Orrenius, and B. Zhivotovsky, “Evaluation of caspase activity in apoptotic cells,” Journal of Immunological Methods, vol. 265, no. 1-2, pp. 97–110, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Erkkilä, H. Aito, K. Aalto, V. Pentikäinen, and L. Dunkel, “Lactate inhibits germ cell apoptosis in the human testis,” Molecular Human Reproduction, vol. 8, no. 2, pp. 109–117, 2002. View at Scopus
  58. M. Tanaka, M. Sawada, S. Yoshida, F. Hanaoka, and T. Marunouchi, “Insulin prevents apoptosis of external granular layer neurons in rat cerebellar slice cultures,” Neuroscience Letters, vol. 199, no. 1, pp. 37–40, 1995. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Guillen, A. Bartolomé, C. Nevado, and M. Benito, “Biphasic effect of insulin on beta cell apoptosis depending on glucose deprivation,” FEBS Letters, vol. 582, no. 28, pp. 3855–3860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. V. Simões, M. Alves, A. Martins, et al., “Regulation of apoptotic signaling pathways by 5α-dihydrotestosterone and 17β-estradiol in Immature rat Sertoli cells,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 135, pp. 15–23, 2013.