About this Journal Submit a Manuscript Table of Contents
ISRN Veterinary Science
Volume 2013 (2013), Article ID 941275, 23 pages
http://dx.doi.org/10.1155/2013/941275
Review Article

Breed-Predispositions to Cancer in Pedigree Dogs

Queen’s Veterinary School Hospital, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK

Received 1 October 2012; Accepted 22 October 2012

Academic Editors: F. Napolitano and R. L. Page

Copyright © 2013 Jane M. Dobson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. J. Adams, K. M. Evans, J. Sampson, and J. L. N. Wood, “Methods and mortality results of a health survey of purebred dogs in the UK,” Journal of Small Animal Practice, vol. 51, no. 10, pp. 512–524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. T. Bronson, “Variation in age at death of dogs of different sexes and breeds,” American Journal of Veterinary Research, vol. 43, no. 11, pp. 2057–2059, 1982. View at Scopus
  3. B. N. Bonnett and A. Egenvall, “Age patterns of disease and death in insured Swedish dogs, Cats and Horses,” Journal of Comparative Pathology, vol. 142, no. 1, pp. S33–S38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. E. G. MacEwen, “Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment,” Cancer and Metastasis Reviews, vol. 9, no. 2, pp. 125–136, 1990. View at Scopus
  5. D. M. Vail and E. G. MacEwen, “Spontaneously occurring tumors of companion animals as models for human cancer,” Cancer Investigation, vol. 18, no. 8, pp. 781–792, 2000. View at Scopus
  6. C. Khanna, K. Lindblad-Toh, D. Vail et al., “The dog as a cancer model,” Nature Biotechnology, vol. 24, no. 9, pp. 1065–1066, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. S. Pinho, S. Carvalho, J. Cabral, C. A. Reis, and F. Gärtner, “Canine tumors: a spontaneous animal model of human carcinogenesis,” Translational Research, vol. 159, no. 3, pp. 165–172, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Marconato, M. E. Gelain, and S. Comazzi, “The dog as a possible animal model for human non-Hodgkin lymphoma: a review,” Hematological Oncology. In press.
  9. K. Arnesen, H. Gamlem, E. Glattre, J. Grondalen, L. Moe, and K. Nordstoga, “The Norwegian Canine Cancer Register 1990–1998: report from the project “Cancer in the Dog”,” European Journal of Companion Animal Practice, vol. 11, pp. 159–169, 2001.
  10. R. Schneider, C. R. Dorn, and D. O. Taylor, “Factors influencing canine mammary cancer development and postsurgical survival,” Journal of the National Cancer Institute, vol. 43, no. 6, pp. 1249–1261, 1969. View at Scopus
  11. J. N. Bryan, M. R. Keeler, C. J. Henry, M. E. Bryan, A. W. Hahn, and C. W. Caldwell, “A population study of neutering status as a risk factor for canine prostate cancer,” Prostate, vol. 67, no. 11, pp. 1174–1181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Dobson, S. Samuel, H. Milstein, K. Rogers, and J. L. N. Wood, “Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs,” Journal of Small Animal Practice, vol. 43, no. 6, pp. 240–246, 2002. View at Scopus
  13. M. H. Goldschmidt and F. S. Shofer, Skin Tumours of the Cat and Dog, Pergamon Press, New York, NY, USA, 1992.
  14. W. A. Priester and F. W. McKay, “The occurrence of tumors in domestic animals,” National Cancer Institute Monograph, no. 54, article 158, 1980. View at Scopus
  15. C. R. Dorn, D. O. Taylor, R. Schneider, H. H. Hibbard, and M. R. Klauber, “Survey of animal neoplasms in Alameda and Contra Costa Counties, California. II. Cancer morbidity in dogs and cats from Alameda County,” Journal of the National Cancer Institute, vol. 40, no. 2, pp. 307–318, 1968. View at Scopus
  16. B. N. Bonnett, A. Egenvall, P. Olson, and A. Hedhammar, “Mortality in insured Swedish dogs: rates and causes of death in various breeds,” Veterinary Record, vol. 141, no. 2, pp. S40–S44, 1997. View at Scopus
  17. R. J. Reid-Smith, B. N. Bonnett, S. W. Martin, S. A. Kruth, A. Abrams-Ogg, and M. J. Hazlett, “The incidence of neoplasia in the canine and feline patient populations of private veterinary practices in southern Ontario,” in Proceedings of the 9th symposium of the International Society for Veterinary Epidemiology and Economics, pp. 935–955, Colorado, Colo, USA, August 2000.
  18. D. F. Merlo, L. Rossi, C. Pellegrino et al., “Cancer incidence in pet dogs: findings of the animal tumor registry of Genoa, Italy,” Journal of Veterinary Internal Medicine, vol. 22, no. 4, pp. 976–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Vascellari, E. Baioni, G. Ru, A. Carminato, and F. Mutinelli, “Animal tumour registry of two provinces in northern Italy: incidence of spontaneous tumours in dogs and cats,” BMC Veterinary Research, vol. 5, article 39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. B. Brønden, S. S. Nielsen, N. Toft, and A. T. Kristensen, “Data from the Danish veterinary cancer registry on the occurrence and distribution of neoplasms in dogs in Denmark,” Veterinary Record, vol. 166, no. 19, pp. 586–590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Egenvall, B. N. Bonnett, A. Hedhammar, and P. Olson, “Mortality in over 350,000 insured Swedish dogs from 1995–2000: II. Breed-specific age and survival patterns and relative risk for causes of death,” Acta Veterinaria Scandinavica, vol. 46, no. 3, pp. 121–136, 2005. View at Scopus
  22. H. F. Proschowsky, H. Rugbjerg, and A. K. Ersbøll, “Morbidity of purebred dogs in Denmark,” Preventive Veterinary Medicine, vol. 58, no. 1-2, pp. 53–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. R. Michell, “Longevity of British breeds of dog and its relationships with sex, size, cardiovascular variables and disease,” Veterinary Record, vol. 145, no. 22, pp. 625–629, 1999. View at Scopus
  24. Kennel Club/British Small Animal Veterinary Association Scientific Committee. Purebred Dog Health Survey 2004, http://www.thekennelclub.org.uk/item/549.
  25. H. G. Parker, A. L. Shearin, and E. A. Ostrander, “Man's best friend becomes biology's best in show: genome analyses in the domestic dog,” Annual Review of Genetics, vol. 44, pp. 309–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. B. M. Vonholdt, J. P. Pollinger, K. E. Lohmueller et al., “Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication,” Nature, vol. 464, no. 7290, pp. 898–902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. R. K. Wayne and B. M. Vonholdt, “Evolutionary genomics of dog domestication,” Mammalian Genome, vol. 23, no. 1-2, pp. 3–18, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. H. G. Parker, N. B. Sutter, and E. A. Ostrander, “Understanding genetic relationships among purebred dogs: the PhyDo project,” in The Dog and Its Genome, O. Giger and K. Lindbland-Toh, Eds., chapter 9, pp. 141–157, Cold Spring Harbour Laboratory Press, New York, NY, USA, 2005.
  29. K. Lindblad-Toh, C. M. Wade, T. S. Mikkelsen et al., “Genome sequence, comparative analysis and haplotype structure of the domestic dog,” Nature, vol. 438, no. 7069, pp. 803–819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Gray, J. M. Granka, C. D. Bustamante et al., “Linkage disequilibrium and demographic history of wild and domestic canids,” Genetics, vol. 181, no. 4, pp. 1493–1505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. F. C. F. Calboli, J. Sampson, N. Fretwell, and D. J. Balding, “Population structure and inbreeding from pedigree analysis of purebred dogs,” Genetics, vol. 179, no. 1, pp. 593–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Cadieu, M. W. Neff, P. Quignon et al., “Coat variation in the domestic dog is governed by variants in three genes,” Science, vol. 326, no. 5949, pp. 150–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. R. Boyko, “The domestic dog: man's best friend in the genomic era,” Genome Biology, vol. 12, no. 2, article 216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. D. F. Patterson, “Conpanion animal medicine in the age of medical genetics,” Journal of Veterinary Internal Medicine, vol. 14, pp. 1–9, 2000.
  35. D. R. Sargan, “IDID: inherited Diseases in Dogs: web-based information for canine inherited disease genetics,” Mammalian Genome, vol. 15, no. 6, pp. 503–506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. N. B. Sutter, M. A. Eberle, H. G. Parker et al., “Extensive and breed-specific linkage disequilibrium in Canis familiaris,” Genome Research, vol. 14, no. 12, pp. 2388–2396, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. L. Shearin and E. A. Ostrander, “Leading the way: canine models of genomics and disease,” DMM Disease Models and Mechanisms, vol. 3, no. 1-2, pp. 27–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. S. Lequarré, L. Andersson, C. André et al., “LUPA: a European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs,” Veterinary Journal, vol. 189, no. 2, pp. 155–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Cadieu and E. A. Ostrander, “Canine genetics offers new mechanisms for the study of human cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 11, pp. 2181–2183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. P. N. Olson, “Using the canine genome to cure cancer and other diseases,” Theriogenology, vol. 68, no. 3, pp. 378–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Scanziani, A. M. Giusti, M. Gualtieri, et al., “Gastric carcinoma in the Belgian shepherd dog,” Journal of Small Animal Practice, vol. 32, pp. 465–469, 1991.
  42. J. C. Phillips, B. Stephenson, M. Hauck, and J. Dillberger, “Heritability and segregation analysis of osteosarcoma in the Scottish deerhound,” Genomics, vol. 90, no. 3, pp. 354–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. H. G. Parker, L. V. Kim, N. B. Sutter et al., “Genetic structure of the purebred domestic domestic dog,” Science, vol. 304, no. 5674, pp. 1160–1164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. U. Tabori and D. Malkin, “Risk stratification in cancer predisposition syndromes: lessons learned from novel molecular developments in Li-Fraumeni syndrome,” Cancer Research, vol. 68, no. 7, pp. 2053–2057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. C. King, J. H. Marks, and J. B. Mandell, “Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2,” Science, vol. 302, no. 5645, pp. 643–646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. A. C. Antoniou, P. D. P. Pharoah, D. F. Easton, and D. G. Evans, “BRCA1 and BRCA2 cancer risks,” Journal of Clinical Oncology, vol. 24, no. 20, pp. 3312–3313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Moe, H. Gamlem, T. J. Jónasdóttir, and F. Lingaas, “Renal microcystic tubular lesions in two 1-year-old dogs—an early sign of hereditary renal cystadenocarcinoma?” Journal of Comparative Pathology, vol. 123, no. 2-3, pp. 218–221, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. T. J. Jónasdóttir, C. S. Mellersh, L. Moe et al., “Genetic mapping of a naturally occurring hereditary renal cancer syndrome in dogs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4132–4137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. M. L. Nickerson, M. B. Warren, J. R. Toro et al., “Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome,” Cancer Cell, vol. 2, no. 2, pp. 157–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. V. K. Affolter and P. F. Moore, “Localized and disseminated histiocytic sarcoma of dendritic cell origin in dogs,” Veterinary Pathology, vol. 39, no. 1, pp. 74–83, 2002. View at Scopus
  51. L. E. Craig, M. E. Julian, and J. D. Ferracone, “The diagnosis and prognosis of synovial tumors in dogs: 35 cases,” Veterinary Pathology, vol. 39, no. 1, pp. 66–73, 2002. View at Scopus
  52. P. F. Moore, The UC Davies Canine Histiocytosis site, http://www.histiocytosis.ucdavis.edu/.
  53. R. J. M. M. Thoolen, J. H. VOS, J. S. Van Der Linde-Sipman et al., “Malignant fibrous histiocytomas in dogs and cats: an immunohistochemical study,” Research in Veterinary Science, vol. 53, no. 2, pp. 198–204, 1992. View at Scopus
  54. R. L. Kerlen and M. J. Hendrick, “Malignant fibrous histiocytoma and malignant histiocytosis in the dog—convergent or divergent phenotypic differentiation?” Veterinary Pathology, vol. 33, no. 6, pp. 713–716, 1996. View at Scopus
  55. J. S. Morris, E. F. McInnes, D. E. Bostock, T. M. Hoather, and J. M. Dobson, “Immunohistochemical and histopathologic features of 14 malignant fibrous histiocytomas from Flat-Coated Retrievers,” Veterinary Pathology, vol. 39, no. 4, pp. 473–479, 2002. View at Scopus
  56. A. K. Fulmer and G. E. Mauldin, “Canine histiocytic neoplasia: an overview,” Canadian Veterinary Journal, vol. 48, no. 10, pp. 1041–1050, 2007. View at Scopus
  57. G. A. Padgett, B. R. Madewell, E. T. Keller, L. Jodar, and M. Packard, “Inheritance of histiocytosis in Bernese mountain dogs,” Journal of Small Animal Practice, vol. 36, no. 3, pp. 93–98, 1995. View at Scopus
  58. J. S. Morris, D. E. Bostock, E. F. Mcinnes, T. M. Hoather, and J. M. Dobson, “Histopathological survey of neoplasms in flat-coated retrievers, 1990 to 1998,” Veterinary Record, vol. 147, no. 11, pp. 291–295, 2000. View at Scopus
  59. J. Dobson, T. Hoather, T. J. McKinley, and J. L. N. Wood, “Mortality in a cohort of flat-coated retrievers in the UK,” Veterinary and Comparative Oncology, vol. 7, no. 2, pp. 115–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. P. F. Moore and A. Rosin, “Malignant histiocytosis of Bernese mountain dogs,” Veterinary Pathology, vol. 23, no. 1, pp. 1–10, 1986. View at Scopus
  61. A. Rosin, P. Moore, and R. Dubielzig, “Malignant histiocytosis in Bernese Mountain dogs,” Journal of the American Veterinary Medical Association, vol. 188, no. 9, pp. 1041–1045, 1986. View at Scopus
  62. I. K. Ramsey, J. S. McKay, H. Rudorf, and J. M. Dobson, “Malignant histiocytosis in three Bernese mountain dogs,” Veterinary Record, vol. 138, no. 18, pp. 440–444, 1996. View at Scopus
  63. S. Rossi, M. E. Gelain, and S. Comazzi, “Disseminated histiocytic sarcoma with peripheral blood involvement in a Bernese Mountain dog,” Veterinary Clinical Pathology, vol. 38, no. 1, pp. 126–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Abadie, B. Hédan, E. Cadieu et al., “Epidemiology, pathology, and genetics of histiocytic sarcoma in the Bernese mountain dog breed,” Journal of Heredity, vol. 100, supplement 1, pp. S19–27, 2009. View at Scopus
  65. F. Constantino-Casas, D. Mayhew, T. M. Hoather, and J. M. Dobson, “The clinical presentation and histopathologic-immunohistochemical classification of histiocytic sarcomas in the Flat Coated retriever,” Veterinary Pathology, vol. 48, no. 3, pp. 764–771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Fidel, I. Schiller, B. Hauser et al., “Histiocytic sarcomas in Flat-Coated Retrievers: a summary of 37 cases (November 1998-March 2005),” Veterinary and Comparative Oncology, vol. 4, pp. 63–74, 2006.
  67. K. A. Skorupski, C. A. Clifford, M. C. Paoloni et al., “CCNU for the treatment of dogs with histiocytic sarcoma,” Journal of Veterinary Internal Medicine, vol. 21, no. 1, pp. 121–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. K. M. Rassnick, A. S. Moore, D. S. Russell et al., “Phase II, open lable trial of single-agent CCNU in dogs with previously untreated histiocytic sarcoma,” Journal of Veterinary Internal Medicine, vol. 24, no. 6, pp. 1528–1531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. P. F. Moore, V. K. Affolter, and W. Vernau, “Canine hemophagocytic histiocytic sarcoma: a proliferative disorder of CD11d+ macrophages,” Veterinary Pathology, vol. 43, no. 5, pp. 632–645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Dobson, E. Villiers, A. Roulois et al., “Histiocytic sarcoma of the spleen in flat-coated retrievers with regenerative anaemia and hypoproteinaemia,” Veterinary Record, vol. 158, no. 24, pp. 825–829, 2006. View at Scopus
  71. L. Van Kuijk, K. van Ginkel, M. Brealey, et al., “Peri-articular histiocytic sarcoma and synovial cell sarcoma in Bernese Mountain dogs: a retrospective investgation of the prevalence of these tumors in association with previously diseased joints,” in Proceedings 8th International Bernese Mountain dog Health Seminar, p. 80, 2011.
  72. L. C. Shaiken, S. M. Evans, and M. H. Goldschmidt, “Radiographic findings in canine malignant histiocytosis,” Veterinary Radiology, vol. 32, no. 5, pp. 237–2242, 1991.
  73. D. W. Hayden, D. J. Waters, B. A. Burke, and J. C. Manivel, “Disseminated malignant histiocytosis in a golden retriever: clinicopathologic, ultrastructural, and immunohistochemical findings,” Veterinary Pathology, vol. 30, no. 3, pp. 256–264, 1993. View at Scopus
  74. B. Kohn, P. Arnold, and B. Kaser-Hotz, “Malignant histiocytosis of the dog: 26 cases (1989–1992),” Kleintierpraxis, vol. 38, pp. 409–424, 1993.
  75. R. M. Schultz, S. M. Puchalski, M. Kent, and P. F. Moore, “Skeletal lesions of histiocytic sarcoma in nineteen dogs,” Veterinary Radiology and Ultrasound, vol. 48, no. 6, pp. 539–543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Nielsen, S. N. Andreasen, S. D. Andersen, and A. T. Kristensen, “Malignant histiocytosis and other causes of death in Bernese mountain dogs in Denmark,” Veterinary Record, vol. 166, no. 7, pp. 199–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Hedan, R. Thomas, A. Motsinger-Reif et al., “Molecular cytogenetic characterization of canine histiocytic sarcoma: a spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior,” BMC Cancer, vol. 11, article 201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. A. L. Shearin, B. Hedan, E. Cadieu, et al., “The MTAP-CDKN2A locus confores susceptibility to a naturally occurring canine cancer,” Cancer Epidemiology Biomarkers & Prevention, vol. 21, no. 7, pp. 1019–1027, 2012.
  79. M. H. Dreyling, D. Roulston, S. K. Bohlander, J. Vardiman, and O. I. Olopade, “Codeletion of CDKN2 and MTAP genes in a subset of non-hodgkin's lymphoma may be associated with histologic transformation from low-grade to diffuse large-cell lymphoma,” Genes Chromosomes and Cancer, vol. 22, no. 1, pp. 72–78, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Gil and G. Peters, “Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all,” Nature Reviews Molecular Cell Biology, vol. 7, no. 9, pp. 667–677, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Aguirre-Hernández, B. S. Milne, C. Queen et al., “Disruption of chromosome 11 in canine fibrosarcomas highlights an unusual variability of CDKN2B in dogs,” BMC Veterinary Research, vol. 5, article 27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. C. J. McNeill, B. Overley, F. S. Shofer et al., “Characterization of the biological behaviour of appendicular osteosarcoma in Rottweilers and a comparison with other breeds: a review of 258 dogs,” Veterinary and Comparative Oncology, vol. 5, no. 2, pp. 90–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. J. A. Rosenberger, N. V. Pablo, and P. C. Crawford, “Prevalence of and intrinsic risk factors for appendicular osteosarcoma in dogs: 179 cases (1996–2005),” Journal of the American Veterinary Medical Association, vol. 231, no. 7, pp. 1076–1080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Ru, B. Terracini, and L. T. Glickman, “Host related risk factors for canine osteosarcoma,” Veterinary Journal, vol. 156, no. 1, pp. 31–39, 1998. View at Scopus
  85. J. Kirpensteijn, M. Kik, G. R. Rutteman, and E. Teske, “Prognostic significance of a new histologic grading system for canine osteosarcoma,” Veterinary Pathology, vol. 39, no. 2, pp. 240–246, 2002. View at Scopus
  86. E. G. Ma, J. Kutzke, J. Carew et al., “c-Met tyrosine kinase receptor expression and function in human and canine osteosarcoma cells,” Clinical and Experimental Metastasis, vol. 20, no. 5, pp. 421–430, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. E. G. Ma, J. Pastor, J. Kutzke et al., “IGF-1 receptor contributes to the malignant phenotype in human and canine osteosarcoma,” Journal of Cellular Biochemistry, vol. 92, no. 1, pp. 77–91, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. D. M. Cooley, B. C. Beranek, D. L. Schlittler, N. W. Glickman, L. T. Glickman, and D. J. Waters, “Endogenous gonadal hormone exposure and bone sarcoma risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 11, pp. 1434–1440, 2002. View at Scopus
  89. S. Mendoza, T. Konishi, W. S. Dernell, S. J. Withrow, and C. W. Miller, “Status of the p53, Rb and Mdm2 genes in canine osteosarcoma,” Anticancer Research, vol. 18, no. 6 A, pp. 4449–4453, 1998. View at Scopus
  90. R. A. Levine and M. A. Fleischli, “Inactivation of p53 and retinoblastoma family pathways in canine osteosarcoma cell lines,” Veterinary Pathology, vol. 37, no. 1, pp. 54–61, 2000. View at Scopus
  91. W. Misdorp and A. A. M. Hart, “Some prognostic and epidemiologic factors in canine osteosarcoma,” Journal of the National Cancer Institute, vol. 62, no. 3, pp. 537–545, 1979. View at Scopus
  92. R. S. Brodey and D. A. Abt, “Results of surgical treatment in 65 dogs with osteosarcoma,” Journal of the American Veterinary Medical Association, vol. 168, no. 11, pp. 1032–1035, 1976. View at Scopus
  93. A. Egenvall, A. Nødtvedt, and H. von Euler, “Bone tumors in a population of 400, 000 insured Swedish dogs up to 10 y of age: incidence and survival,” Canadian Journal of Veterinary Research, vol. 71, no. 4, pp. 292–299, 2007. View at Scopus
  94. W. S. Dernell, N. P. Ehrhart, R. C. Straw, and D. Vail, “Tumors of the skeletal system,” in Withrow and MacEwen’s Small Animal Clinical Oncology, S. J. Withrow and D. M. Vail, Eds., Chapter 23, pp. 540–582, Saunders, Elsevier, 2007.
  95. N. B. Sutter, C. D. Bustamante, K. Chase, et al., “A single IGF1 allele is a major determinant of small size in dogs,” Science, vol. 316, no. 5821, pp. 112–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. L. K. Lord, J. E. Yaissle, L. Marin, and C. G. Couto, “Results of a web-based health survey of retired racing greyhounds,” Journal of Veterinary Internal Medicine, vol. 21, no. 6, pp. 1243–1250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Paoloni and C. Khanna, “Translation of new cancer treatments from pet dogs to humans,” Nature Reviews Cancer, vol. 8, no. 2, pp. 147–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. S. J. Withrow and R. M. Wilkins, “Cross talk from pets to people: translational osteosarcoma treatments,” ILAR Journal, vol. 51, no. 3, pp. 208–213, 2010. View at Scopus
  99. E. Morello, M. Martano, and P. Buracco, “Biology, diagnosis and treatment of canine appendicular osteosarcoma: similarities and differences with human osteosarcoma,” Veterinary Journal, vol. 189, no. 3, pp. 268–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. M. C. Scott, A. L. Sarver, K. J. Gavin et al., “Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach,” Bone, vol. 49, no. 3, pp. 356–367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Y. Angstadt, A. Motsinger-Reif, R. Thomas et al., “Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart,” Genes Chromosomes and Cancer, vol. 50, no. 11, pp. 859–874, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Khanna, X. Wan, S. Bose et al., “The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis,” Nature Medicine, vol. 10, no. 2, pp. 182–186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Paoloni, S. Davis, S. Lana et al., “Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression,” BMC Genomics, vol. 10, article 625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. G. T. Selvarajah, J. Kirpensteijn, M. E. van Wolferen, N. A. S. Rao, H. Fieten, and J. A. Mol, “Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times,” Molecular Cancer, vol. 8, article 72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. L. E. O'Donoghue, A. A. Ptitsyn, D. A. Kamstock, J. Siebert, R. S. Thomas, and D. L. Duval, “Expression profiling in canine osteosarcoma: identification of biomarkers and pathways associated with outcome,” BMC Cancer, vol. 10, article 506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. R. Thomas, H. J. Wang, P. C. Tsai et al., “Influence of genetic background on tumor karyotypes: evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma,” Chromosome Research, vol. 17, no. 3, pp. 365–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Koch, G. P. Nielsen, and S. S. Yoon, “Malignant tumors of blood vessels: angiosarcomas, hemangioendotheliomas, and hemangioperictyomas,” Journal of Surgical Oncology, vol. 97, no. 4, pp. 321–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. H. Ward, L. E. Fox, M. B. Calderwood-Mays, A. S. Hammer, and C. G. Couto, “Cutaneous hemangiosarcoma in 25 dogs: a retrospective study,” Journal of Veterinary Internal Medicine, vol. 8, no. 5, pp. 345–348, 1994. View at Scopus
  109. C. Prymak, L. J. McKee, M. H. Goldschmidt, and L. T. Glickman, “Epidemiologic, clinical, pathologic, and prognostic characteristics of splenic hemangiosarcoma and splenic hematoma in dogs: 217 cases (1985),” Journal of the American Veterinary Medical Association, vol. 193, no. 6, pp. 706–712, 1988. View at Scopus
  110. N. O. Brown, A. K. Patnaik, and E. G. MacEwen, “Canine hemangiosarcoma: retrospective analysis of 104 cases,” Journal of the American Veterinary Medical Association, vol. 186, no. 1, pp. 56–58, 1985. View at Scopus
  111. W. L. Spangler and M. R. Culbertson, “Prevalence, type, and importance of splenic diseases in dogs: 1,480 cases (1985–1989),” Journal of the American Veterinary Medical Association, vol. 200, no. 6, pp. 829–834, 1992. View at Scopus
  112. Golden Retriever Club of North America, http://www.grca.org/pdf/health/CancerSamplesApril2011.pdf.
  113. B. A. Tamburini, S. Trapp, T. L. Phang, J. T. Schappa, L. E. Hunter, and J. F. Modiano, “Gene expression profiles of sporadic canine hemangiosarcoma are uniquely associated with breed,” PLoS ONE, vol. 4, no. 5, Article ID e5549, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. L. Nasir, G. R. Rutteman, S. W. J. Reid, C. Schulze, and D. J. Argyle, “Analysis of p53 mutational events and MDM2 amplification in canine soft-tissue sarcomas,” Cancer Letters, vol. 174, no. 1, pp. 83–89, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. B. Mayr, S. Zwetkoff, G. Schaffner, and M. Reifinger, “Tumour suppressor gene p53 mutation in a case of haemangiosarcoma of a dog,” Acta Veterinaria Hungarica, vol. 50, no. 2, pp. 157–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. K. Yonemaru, H. Sakai, M. Murakami et al., “The significance of p53 and retinoblastoma pathways in canine hemangiosarcoma,” Journal of Veterinary Medical Science, vol. 69, no. 3, pp. 271–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Bartkova, J. Lukas, P. Guldberg et al., “The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis,” Cancer Research, vol. 56, no. 23, pp. 5475–5483, 1996. View at Scopus
  118. H. Kumar, K. Heer, P. W. R. Lee et al., “Preoperative serum vascular endothelial growth factor can predict stage in colorectal cancer,” Clinical Cancer Research, vol. 4, no. 5, pp. 1279–1285, 1998. View at Scopus
  119. C. A. Clifford, D. Hughes, M. W. Beal et al., “Plasma vascular endothelial growth factor concentrations in healthy dogs and dogs with hemangiosarcoma,” Journal of Veterinary Internal Medicine, vol. 15, no. 2, pp. 131–135, 2001. View at Scopus
  120. C. A. Clifford, D. Hughes, M. W. Beal, C. J. Henry, K. J. Drobatz, and K. U. Sorenmo, “Vascular endothelial growth factor concentrations in body cavity effusions in dogs,” Journal of Veterinary Internal Medicine, vol. 16, no. 2, pp. 164–168, 2002. View at Scopus
  121. S. E. Lyles, R. J. Milner, K. Kow, and M. E. Salute, “In vitro effects of the tyrosine kinase inhibitor, masitinib mesylate, on canine hemangiosarcoma cell lines,” Veterinary and Comparative Oncology, vol. 10, no. 3, pp. 223–235, 2012. View at Publisher · View at Google Scholar · View at Scopus
  122. L. C. Cantley and B. G. Neel, “New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 8, pp. 4240–4245, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. F. Gesbert, W. R. Sellers, S. Signoretti, M. Loda, and J. D. Griffin, “BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27kip1 through the phosphatidylinositol 3-kinase/AKT pathway,” The Journal of Biological Chemistry, vol. 275, no. 50, pp. 39223–39230, 2000. View at Publisher · View at Google Scholar · View at Scopus
  124. D. Koul, R. Shen, A. Garyali, L. D. Ke, T. J. Liu, and W. K. Yung, “MMAC/PTEN tumor suppressor gene regulates vascular endothelial growth factor-mediated angiogenesis in prostate cancer,” International Journal of Oncology, vol. 21, no. 3, pp. 469–475, 2002. View at Scopus
  125. E. B. Dickerson, R. Thomas, S. P. Fosmire et al., “Mutations of phosphatase and tensin homolog deleted from chromosome 10 in canine hemangiosarcoma,” Veterinary Pathology, vol. 42, no. 5, pp. 618–632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. B. H. Jiang, J. Z. Zheng, M. Aoki, and P. K. Vogt, “Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1749–1753, 2000. View at Publisher · View at Google Scholar · View at Scopus
  127. B. A. Tamburini, T. L. Phang, S. P. Fosmire et al., “Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma,” BMC Cancer, vol. 10, article 619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. P. Quignon, L. Herbin, E. Cadieu et al., “Canine population structure: assessment and impact of intra-breed stratification on SNP-based association studies,” PLoS ONE, vol. 2, no. 12, Article ID e1324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. R. S. Brodey, “Canine and feline neoplasia,” Advances in Veterinary Science and Comparative medicine, vol. 14, pp. 309–354, 1970. View at Scopus
  130. J. A. Villamil, C. J. Henry, J. N. Bryan et al., “Identification of the most common cutaneous neoplasms in dogs and evaluation of breed and age distributions for selected neoplasms,” Journal of the American Veterinary Medical Association, vol. 239, no. 7, pp. 960–965, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Murphy, A. H. Sparkes, A. S. Blunden, M. J. Brearley, and K. C. Smith, “Effects of stage and number of tumours on prognosis of dogs with cutaneous mast cell tumours,” Veterinary Record, vol. 158, no. 9, pp. 287–291, 2006. View at Scopus
  132. J. A. Peters, “Canine mastocytoma: excess risk as related to ancestry,” Journal of the National Cancer Institute, vol. 42, no. 3, pp. 435–443, 1969. View at Scopus
  133. D. M. Miller, “The occurrence of mast cell tumors in young Shar-Peis,” Journal of Veterinary Diagnostic Investigation, vol. 7, no. 3, pp. 360–363, 1995. View at Scopus
  134. J. W. Warland and J. M. Dobson, “The effect of breed and anatomic location on canine mast cell tumour clinical behaviour,” in Proceeding of the WSAVA/ FECAVA/ BSAVA World Congress, p. 538, Birmingham, UK, April 2012.
  135. E. A. McNeil, A. L. Prink, and TD. O’Brien, “Evaluation of risk and clinical outcome of mast cell tumours in pug dogs,” Veterinary and Comparative Oncology, vol. 4, pp. 2–28, 2006.
  136. J. M. Dobson and T. J. Scase, “Advances in the diagnosis and management of cutaneous mast cell tumours in dogs,” Journal of Small Animal Practice, vol. 48, no. 8, pp. 424–431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. B. Mayr, M. Reifinger, G. Brem, C. Feil, and W. Schleger, “Cytogenetic, ras, and p53: studies in cases, of canine neoplasms (hemangiopericytoma, mastocytoma, histiocytoma, chloroma),” Journal of Heredity, vol. 90, no. 1, pp. 124–128, 1999. View at Publisher · View at Google Scholar · View at Scopus
  138. C. A. London, W. C. Kisseberth, S. J. Galli, E. N. Geissler, and S. C. Helfand, “Expression of stem cell factor receptor (c-kit) by the malignant mast cells from spontaneous canine mast cell tumours,” Journal of Comparative Pathology, vol. 115, no. 4, pp. 399–414, 1996. View at Scopus
  139. C. A. London, S. J. Galli, T. Yuuki, Z. Q. Hu, S. C. Helfand, and E. N. Geissler, “Spontaneous canine mast cell tumors express tandem duplications in the proto-oncogene c-kit,” Experimental Hematology, vol. 27, no. 4, pp. 689–697, 1999. View at Publisher · View at Google Scholar · View at Scopus
  140. Y. Ma, B. J. Longley, X. Wang, J. L. Blount, K. Langley, and G. H. Caughey, “Clustering of activating mutations in c-KIT's juxtamembrane coding region in canine mast cell neoplasms,” Journal of Investigative Dermatology, vol. 112, no. 2, pp. 165–170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. M. J. Reguera, L. Ferrer, and R. M. Rabanal, “Evaluation of an intron deletion in the c-kit gene of canine mast cell tumors,” American Journal of Veterinary Research, vol. 63, no. 9, pp. 1257–1261, 2002. View at Scopus
  142. D. Zemke, B. Yamini, and V. Yuzbasiyan-Gurkan, “Mutations in the juxtamembrane domain of c-KIT are associated with higher grade mast cell tumors in dogs,” Veterinary Pathology, vol. 39, no. 5, pp. 529–535, 2002. View at Scopus
  143. S. Downing, M. B. Chien, P. H. Kass, P. F. Moore, and C. A. London, “Prevalence and importance of internal tandem duplications in exons 11 and 12 of c-kit in mast cell tumors of dogs,” American Journal of Veterinary Research, vol. 63, no. 12, pp. 1718–1723, 2002. View at Scopus
  144. F. Riva, S. Brizzola, D. Stefanello, S. Crema, and L. Turin, “A study of mutations in the c-kit gene of 32 dogs with mastocytoma,” Journal of Veterinary Diagnostic Investigation, vol. 17, no. 4, pp. 385–388, 2005. View at Scopus
  145. J. D. Webster, V. Yuzbasiyan-Gurkan, J. B. Kaneene, R. Miller, J. H. Resau, and M. Kiupel, “The role of c-KIT in tumorigenesis: evaluation in canine cutaneous mast cell tumors,” Neoplasia, vol. 8, no. 2, pp. 104–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. J. D. Webster, M. Kiupel, and V. Yuzbasiyan-Gurkan, “Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors,” BMC Cancer, vol. 6, article 85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. K. Watabe, A. Ito, Y. I. Koma, and Y. Kitamura, “IGSF4: a new intercellular adhesion molecule that is called by three names, TSLC1, SgIGSF and SynCAM, by virtue of its diverse function,” Histology and Histopathology, vol. 18, no. 4, pp. 1321–1329, 2003. View at Scopus
  148. T. Fukami, H. Fukuhara, M. Kuramochi et al., “Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines,” International Journal of Cancer, vol. 107, no. 1, pp. 53–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. G. Heller, J. Geradts, B. Ziegler et al., “Downregulation of TSLC1 and DAL-1 expression occurs frequently in breast cancer,” Breast Cancer Research and Treatment, vol. 103, no. 3, pp. 283–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. G. Tamura, “Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer,” World Journal of Gastroenterology, vol. 12, no. 2, pp. 192–198, 2006. View at Scopus
  151. F. Taylor, S. Murphy, T. Hoather, J. Dobson, and T. Scase, “TSLC1 tumour-suppressor gene expression in canine mast cell tumours,” Veterinary and Comparative Oncology, vol. 8, no. 4, pp. 263–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. M. R. Hussein and G. S. Wood, “Microsatellite instability and its relevance to cutaneous tumorigenesis,” Journal of Cutaneous Pathology, vol. 29, no. 5, pp. 257–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  153. J. S. Munday, A. F. French, I. R. Gibson, and K. Gwynne, “Widespread mismatch repair protein expression in canine cutaneous mast cell tumors,” Veterinary Pathology, vol. 46, no. 2, pp. 227–232, 2009. View at Scopus
  154. D. E. Onions, “A prospective survey of familial canine lymphosarcoma,” Journal of the National Cancer Institute, vol. 72, no. 4, pp. 909–91, 1984. View at Scopus
  155. C. Fournel-Fleury, F. Ponce, P. Felman et al., “Canine T-cell lymphomas: a morphological, immunological, and clinical study of 46 new cases,” Veterinary Pathology, vol. 39, no. 1, pp. 92–109, 2002. View at Scopus
  156. E. Teske, “Canine malignant lymphoma: a review and comparison with human non-Hodgkin's lymphoma,” Veterinary Quarterly, vol. 16, no. 4, pp. 209–219, 1994. View at Scopus
  157. E. Teske, J. P. de Vos, H. F. Egberink, and J. H. Vos, “Clustering in canine malignant lymphoma,” Veterinary Quarterly, vol. 16, no. 2, pp. 134–136, 1994. View at Scopus
  158. D. S. Edwards, W. E. Henley, E. F. Harding, J. M. Dobson, and J. L. N. Wood, “Breed incidence of lymphoma in a UK population of insured dogs,” Veterinary and Comparative Oncology, vol. 1, no. 4, pp. 200–2206, 2003.
  159. M. Pastor, K. Chalvet-Monfray, T. Marchal et al., “Genetic and environmental risk indicators in canine non-Hodgkin's lymphomas: breed associations and geographic distribution of 608 cases diagnosed throughout France over 1 year,” Journal of Veterinary Internal Medicine, vol. 23, no. 2, pp. 301–310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. J. F. Modiano, M. Breen, R. C. Burnett et al., “Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds indicates heritable risk,” Cancer Research, vol. 65, no. 13, pp. 5654–5661, 2005. View at Publisher · View at Google Scholar · View at Scopus
  161. D. M. Lurie, R. J. Milner, S. E. Suter, and W. Vernau, “Immunophenotypic and cytomorphologic subclassification of T-cell lymphoma in the boxer breed,” Veterinary Immunology and Immunopathology, vol. 125, no. 1-2, pp. 102–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. L. D. Garrett, D. H. Thamm, R. Chun, R. Dudley, and D. M. Vail, “Evaluation of a 6-month chemotherapy protocol with no maintenance therapy for dogs with lymphoma,” Journal of Veterinary Internal Medicine, vol. 16, no. 6, pp. 704–709, 2002. View at Scopus
  163. R. Thomas, K. C. Smith, E. A. Ostrander, F. Galibert, and M. Breen, “Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes,” British Journal of Cancer, vol. 89, no. 8, pp. 1530–1537, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. R. Thomas, E. L. Seiser, A. Motsinger-Reif et al., “Refining tumor-associated aneuploidy through “genomic recoding” of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas,” Leukemia and Lymphoma, vol. 52, no. 7, pp. 1321–1335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. R. S. Brodey, “A clinical and pathiologic study of 130 neoplasms of the mouth and pharynx in the dog,” American Journal of Veterinary Research, vol. 21, pp. 787–812, 1960.
  166. R. F. Hoyt and S. J. Withrow, “Oral malignancy in the dog,” Journal of the American Animal Hospital Association, vol. 20, article 8392, 1984.
  167. L. B. Brønden, T. Eriksen, and A. T. Kristensen, “Oral malignant melanomas and other head and neck neoplasms in Danish dogs—data from the Danish Veterinary Cancer Registry,” Acta veterinaria Scandinavica, vol. 51, article 54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. S. H. Smith, M. H. Goldschmidt, and P. M. McManus, “A comparative review of melanocytic neoplasms,” Veterinary Pathology, vol. 39, no. 6, pp. 651–678, 2002. View at Scopus
  169. D. G. Esplin, “Survival of dogs following surgical excision of histologically well-differentiated melanocytic neoplasms of the mucous membranes of the lips and oral cavity,” Veterinary Pathology, vol. 45, no. 6, pp. 889–896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. W. L. Spangler and P. H. Kass, “The histologic and epidemiologic bases for prognostic considerations in canine melanocytic neoplasia,” Veterinary Pathology, vol. 43, no. 2, pp. 136–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  171. R. C. Smedley, W. L. Spangler, D. G. Esplin et al., “Prognostic markers for canine melanocytic neoplasms: a comparative review of the literature and goals for future investigation,” Veterinary Pathology, vol. 48, no. 1, pp. 54–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. C. R. Dorn and W. A. Priester, “Epidemiologic analysis of oral and pharyngeal cancer in dogs, cats, horses, and cattle,” Journal of the American Veterinary Medical Association, vol. 169, no. 11, pp. 1202–1206, 1976. View at Scopus
  173. J. A. Ramos-Vara, M. E. Beissenherz, M. A. Miller et al., “Retrospective study of 338 canine oral melanomas with clinical, histologic, and immunohistochemical review of 129 cases,” Veterinary Pathology, vol. 37, no. 6, pp. 597–608, 2000. View at Scopus
  174. B. Bolon, M. B. Calderwood Mays, and B. J. Hall, “Characteristics of canine melanomas and comparison of histology and DNA ploidy to their biologic behavior,” Veterinary pathology, vol. 27, no. 2, pp. 96–102, 1990. View at Scopus
  175. R. Marks, “Epidemiology of melanoma,” Clinical and Experimental Dermatology, vol. 25, no. 6, pp. 459–463, 2000. View at Publisher · View at Google Scholar · View at Scopus
  176. C. G. Ang, J. W. Kelly, L. Fritschi, and J. P. Dowling, “Characteristics of familial and non-familial melanoma in Australia,” Melanoma Research, vol. 8, no. 5, pp. 459–464, 1998. View at Scopus
  177. A. M. Goldstein, M. C. Fraser, J. P. Struewing et al., “Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations,” The New England Journal of Medicine, vol. 333, no. 15, pp. 970–974, 1995. View at Publisher · View at Google Scholar · View at Scopus
  178. M. H. Greene, “The genetics of hereditary melanoma and nevi: 1998 update,” Cancer, vol. 86, no. 11, pp. 2464–2477, 1999. View at Scopus
  179. K. Omholt, A. Platz, L. Kanter, U. Ringborg, and J. Hansson, “NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor prgression,” Clinical Cancer Research, vol. 9, no. 17, pp. 6483–6488, 2003. View at Scopus
  180. P. Guldberg, P. Thor Straten, A. Birck, V. Ahrenkiel, A. F. Kirkin, and J. Zeuthen, “Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma,” Cancer Research, vol. 57, no. 17, pp. 3660–3663, 1997. View at Scopus
  181. D. T. Bishop, F. Demenais, M. M. Iles et al., “Genome-wide association study identifies three loci associated with melanoma risk,” Nature Genetics, vol. 41, no. 8, pp. 920–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. M. R. Gerstenblith, J. Shi, and M. T. Landi, “Genome-wide association studies of pigmentation and skin cancer: a review and meta-analysis,” Pigment Cell and Melanoma Research, vol. 23, no. 5, pp. 587–606, 2010. View at Publisher · View at Google Scholar
  183. S. Turajlic, S. J. Furney, M. B. Lambros et al., “Whole genome sequencing of matched primary and metastatic acral melanomas,” Genome Research, vol. 22, no. 2, pp. 196–207, 2012. View at Publisher · View at Google Scholar · View at Scopus
  184. A. Koenig, S. R. Bianco, S. Fosmire, J. Wojcieszyn, and J. F. Modiano, “Expression and significance of p53, rb, p21/waf-1, p16/ink-4a, and PTEN tumor suppressors in canine melanoma,” Veterinary Pathology, vol. 39, no. 4, pp. 458–472, 2002. View at Scopus
  185. M. G. Ritt, J. Wojcieszyn, and J. F. Modiano, “Functional loss of p21/Waf-1 in a case of benign canine multicentric melanoma,” Veterinary Pathology, vol. 35, no. 2, pp. 94–101, 1998. View at Scopus
  186. J. I. Han, D. Y. Kim, and K. J. Na, “Dysregulation of the wnt/β-catenin signaling pathway in canine cutaneous melanotic tumor,” Veterinary Pathology, vol. 47, no. 2, pp. 285–291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. S. Noguchi, T. Mori, Y. Hoshino, N. Yamada, K. Maruo, and Y. Akao, “MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas,” Veterinary and Comparative Oncology. In press. View at Publisher · View at Google Scholar
  188. S. Noguchi, T. Mori, Y. Hoshino et al., “Comparative study of anti-oncogenic MicroRNA-145 in canine and human malignant melanoma,” Journal of Veterinary Medical Science, vol. 74, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  189. J. Gomes, F. L. Queiroga, J. Prada, and I. Pires, “Study of c-kit immunoexpression in canine cutaneous melanocytic tumors,” Melanoma Research, vol. 22, no. 3, pp. 195–201, 2012. View at Publisher · View at Google Scholar · View at Scopus
  190. A. Murakami, T. Mori, H. Sakai et al., “Analysis of KIT expression and KIT exon 11 mutations in canine oral malignant melanomas,” Veterinary and Comparative Oncology, vol. 9, no. 3, pp. 227–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  191. I. Pires, A. Garcia, J. Prada, and F. L. Queiroga, “COX-1 and COX-2 expression in canine cutaneous, oral and ocular melanocytic tumours,” Journal of Comparative Pathology, vol. 143, no. 2-3, pp. 142–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  192. C. M. Martínez, C. Peñafiel-Verdú, M. Vilafranca et al., “Cyclooxygenase-2 expression is related with localization, proliferation, and overall survival in canine melanocytic neoplasms,” Veterinary Pathology, vol. 48, no. 6, pp. 1204–1211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. M.-J. Docampo, J. Cabrera, R. M. Rabanal, and A. Bassols, “Expression of matrix metalloproteinase-2 and -9 and membrane-type 1 matrix metalloproteinase in melanocytic tumors of dogs and canine melanoma cell lines,” American Journal of Veterinary Research, vol. 72, no. 8, pp. 1087–1096, 2011. View at Publisher · View at Google Scholar · View at Scopus
  194. I. L. Bergin, R. C. Smedley, D. G. Esplin, W. L. Spangler, and M. Kiupel, “Prognostic evaluation of ki67 threshold value in canine oral melanoma,” Veterinary Pathology, vol. 48, no. 1, pp. 41–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  195. L. Moe, “Population-based incidence of mammary tumours in some dog breeds,” Journal of Reproduction and Fertility. Supplement, vol. 57, pp. 439–443, 2001. View at Scopus
  196. A. Egenvall, B. N. Bonnett, P. Öhagen, P. Olson, A. Hedhammar, and H. Von Euler, “Incidence of and survival after mammary tumors in a population of over 80,000 insured female dogs in Sweden from 1995 to 2002,” Preventive Veterinary Medicine, vol. 69, no. 1-2, pp. 109–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  197. G. R. Rutteman, “Hormones and mammary tumour disease in the female dog: an update,” In Vivo, vol. 4, no. 1, pp. 33–40, 1990. View at Scopus
  198. H. Von Euler, “Tumours of the mammary glands,” in BSAVA Manual of Canine and Feline Oncology, J. Dobson and Lascelles, Eds., chapter 16, pp. 237–247, BSAVA, 3rd edition, 2011.
  199. T. Itoh, K. Uchida, K. Ishikawa et al., “Clinicopathological survey of 101 canine mammary gland tumors: differences between small-breed dogs and others,” Journal of Veterinary Medical Science, vol. 67, no. 3, pp. 345–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  200. P. D. P. Pharoah, A. C. Antoniou, D. F. Easton, and B. A. J. Ponder, “Polygenes, risk prediction, and targeted prevention of breast cancer,” The New England Journal of Medicine, vol. 358, no. 26, pp. 2796–2803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. P. Kenemans, R. A. Verstraeten, and R. H. M. Verheijen, “Oncogenic pathways in hereditary and sporadic breast cancer,” Maturitas, vol. 49, no. 1, pp. 34–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  202. D. F. Easton, K. A. Pooley, A. M. Dunning, et al., “Genome-wide association study identifies novel breast cancer susceptibility loci,” Nature, vol. 447, no. 7148, pp. 1087–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  203. P. D. P. Pharoah, A. M. Dunning, B. A. J. Ponder, and D. F. Easton, “Association studies for finding cancer-susceptibility genetic variants,” Nature Reviews Cancer, vol. 4, no. 11, pp. 850–860, 2004. View at Publisher · View at Google Scholar · View at Scopus
  204. M. Ghoussaini and P. D. P. Pharoah, “Polygenic susceptibility to breast cancer: current state-of-the-art,” Future Oncology, vol. 5, no. 5, pp. 689–701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. P. J. Stephens, P. S. Tarpey, H. Davies et al., “The landscape of cancer genes and mutational processes in breast cancer,” Nature, vol. 486, no. 7403, pp. 400–404, 2012. View at Publisher · View at Google Scholar · View at Scopus
  206. L. L. Chu, G. R. Rutteman, J. M. C. Kong et al., “Genomic organization of the canine p53 gene and its mutational status in canine mammary neoplasia,” Breast Cancer Research and Treatment, vol. 50, no. 1, pp. 11–25, 1998. View at Publisher · View at Google Scholar · View at Scopus
  207. S. Wakui, T. Muto, K. Yokoo et al., “Prognostic status of p53 gene mutation in canine mammary carcinoma,” Anticancer Research, vol. 21, no. 1, pp. 611–616, 2001.
  208. F. L. Queiroga, I. Pires, L. Lobo, and C. S. Lopes, “The role of Cox-2 expression in the prognosis of dogs with malignant mammary tumours,” Research in Veterinary Science, vol. 88, no. 3, pp. 441–445, 2010. View at Publisher · View at Google Scholar
  209. P. Uva, L. Aurisicchio, J. Watters et al., “Comparative expression pathway analysis of human and canine mammary tumors,” BMC Genomics, vol. 10, article 135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  210. P. J. Rivera, M. Melin, T. Biagi et al., “Mammary tumor development in dogs is associated with BRCA1 and BRCA2,” Cancer Research, vol. 69, no. 22, pp. 8770–8774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  211. P. Rivera, Biochemical markers and genetic risk factors in canine tumours [Ph.D. thesis], Swedish University of Agricultural Sciences. Acta Universitatis Agriculturae Sueciae, 2010.
  212. L. J. Kennedy, A. Barnes, G. M. Happ et al., “Extensive interbreed, but minimal intrabreed, variation of DLA class II alleles and haplotypes in dogs,” Tissue Antigens, vol. 59, no. 3, pp. 194–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  213. M. Hafskjold, L. J. Kennedy, W. E. R. Ollier, and B. Catchpole, “.Restricted dog leucocyte antigen (DLA) genotypes in Rottweiler dogs: could this cause poor responses to vaccination?” in BSAVA Congress, Scientific Proceedings, p. 507, 2007.
  214. G. A. Polton, V. Mowat, H. C. Lee, K. A. McKee, and T. J. Scase, “Breed, gender and neutering statuus of British dogs with anal sac gland carcinoma,” Veterinary and Comparative Oncology, vol. 4, pp. 125–1131, 2006.
  215. J. Aguirre-Hernández, G. Polton, L. J. Kennedy, and D. R. Sargan, “Association between anal sac gland carcinoma and dog leukocyte antigen-DQB1 in the English Cocker Spaniel,” Tissue Antigens, vol. 76, no. 6, pp. 476–481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  216. L. J. Kennedy, A. Barnes, W. E. R. Ollier, and M. J. Day, “Association of a common dog leucocyte antigen class II haplotype with canine primary immune-mediated haemolytic anaemia,” Tissue Antigens, vol. 68, no. 6, pp. 502–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  217. C. J. Henry, W. G. Brewer, E. M. Whitley et al., “Canine digital tumors: a veterinary cooperative oncology group retrospective study of 64 dogs,” Journal of Veterinary Internal Medicine, vol. 19, no. 5, pp. 720–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  218. B. K. Wobeser, B. A. Kidney, B. E. Powers et al., “Diagnoses and clinical outcomes associated with surgically amputated canine digits submitted to multiple veterinary diagnostic laboratories,” Veterinary Pathology, vol. 44, no. 3, pp. 355–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  219. M. Paradis, D. W. Scott, and L. Breton, “Squamous cell carcinoma of the nail bed in three related giant schnauzers,” Veterinary Record, vol. 125, no. 12, pp. 322–324, 1989. View at Scopus
  220. D. W. Knapp, N. W. Glickman, D. B. Denicola, P. L. Bonney, T. L. Lin, and L. T. Glickman, “Naturally-occurring canine transitional cell carcinoma of the urinary bladder: a relevant model of human invasive bladder cancer,” Urologic Oncology, vol. 5, no. 2, pp. 47–59, 2000. View at Publisher · View at Google Scholar · View at Scopus
  221. A. M. Norris, E. J. Laing, V. E. Valli et al., “Canine bladder and urethral tumors: a retrospective study of 115 cases (1980–1985),” Journal of Veterinary Internal Medicine, vol. 6, no. 3, pp. 145–153, 1992. View at Scopus
  222. E. Teske, E. C. Naan, E. M. Van Dijk, E. Van Garderen, and J. A. Schalken, “Canine prostate carcinoma: epidemiological evidence of an increased risk in castrated dogs,” Molecular and Cellular Endocrinology, vol. 197, no. 1-2, pp. 251–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  223. J. M. Snyder, F. S. Shofer, T. J. Van Winkle, and C. Massicotte, “Canine intracranial primary neoplasia: 173 Cases (1986–2003),” Journal of Veterinary Internal Medicine, vol. 20, no. 3, pp. 669–675, 2006. View at Publisher · View at Google Scholar · View at Scopus
  224. A. T. Liao, M. McMahon, and C. A. London, “Identification of a novel germline MET mutation in dogs,” Animal Genetics, vol. 37, no. 3, pp. 248–252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  225. T. L. D. R. Nakagawa, H. Sakai, T. Yanai et al., “Simultaneous aortic body tumor and pulmonary histiocytic sarcoma in a Flat-coated Retriever,” Journal of Veterinary Medical Science, vol. 71, no. 9, pp. 1221–1223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  226. R. B. Rebhun and D. H. Thamm, “Multiple distinct malignancies in dogs: 53 cases,” Journal of the American Animal Hospital Association, vol. 46, no. 1, pp. 20–30, 2010. View at Scopus
  227. B. B. Takashima-Uebelhoer, L. G. Barber, S. E. Zagarins et al., “Household chemical exposures and the risk of canine malignant lymphoma, a model for human non-Hodgkin's lymphoma,” Environmental Research, vol. 112, pp. 171–176, 2012. View at Publisher · View at Google Scholar · View at Scopus
  228. N. Rooney and D. Sargan, Pedigree dog breeding in the UK: a major welfare concern?, http://www.rspca.org.uk/ImageLocator/LocateAsset?asset=document&assetId=1232712491490&mode=prd.
  229. P. Bateson, Independent Inquiry into Dog Breeding, 2010, http://breedinginquiry.files.wordpress.com/2010/01/final-dog-inquiry-120110.pdf.
  230. M. Sullivan, R. Lee, E. W. Fisher, A. S. Nash, and I. A. McCandlish, “A study of 31 cases of gastric carcinoma in dogs,” Veterinary Record, vol. 120, no. 4, pp. 79–83, 1987. View at Scopus
  231. K. L. Wucherer and V. Wilke, “Thyroid cancer in dogs: an update based on 638 cases (1995–2005),” Journal of the American Animal Hospital Association, vol. 46, no. 4, pp. 249–254, 2010. View at Scopus
  232. H. M. Hayes Jr., G. P. Wilson, and H. F. Fraumeni Jr., “Carcinoma of the nasal cavity and paranasal sinuses in dogs: descriptive epidemiology,” The Cornell Veterinarian, vol. 72, no. 2, pp. 168–179, 1982.
  233. H. M. Hayes and B. Sass, “Chemoreceptor neoplasia: a study of the epidemiological features of 357 canine cases,” Journal of Veterinary Medicine, vol. 35, no. 6, pp. 401–408, 1988. View at Scopus
  234. A. Nødtvedt, H. Gamlem, G. Gunnes, T. Grotmol, A. Indrebø, and L. Moe, “Breed differences in the proportional morbidity of testicular tumours and distribution of histopathologic types in a population-based canine cancer registry,” Veterinary and Comparative Oncology, vol. 9, no. 1, pp. 45–54, 2011. View at Publisher · View at Google Scholar · View at Scopus