About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2011 (2011), Article ID 238379, 8 pages
http://dx.doi.org/10.5402/2011/238379
Research Article

Modification of a Popular Syngeneic Murine Mammary Tumor Model for Immunotherapy Studies

1Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
2Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA

Received 21 May 2011; Accepted 22 June 2011

Academic Editors: A. Vicente and A. Vyakarnam

Copyright © 2011 Armando Rivera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Crnic and G. Christofori, “Novel technologies and recent advances in metastasis research,” International Journal of Developmental Biology, vol. 48, no. 5-6, pp. 573–581, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. J. Aslakson and F. R. Miller, “Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor,” Cancer Research, vol. 52, no. 6, pp. 1399–1405, 1992. View at Scopus
  3. K. Tao, M. Fang, J. Alroy, and G. G. Gary, “Imagable 4T1 model for the study of late stage breast cancer,” BMC Cancer, vol. 8, article 228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Nakamori, X. Fu, R. Rousseau, S. Y. Chen, and X. Zhang, “Destruction of nonimmunogenic mammary tumor cells by a fusogenic oncolytic herpes simplex virus induces potent antitumor immunity,” Molecular Therapy, vol. 9, no. 5, pp. 658–665, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Li, A. Dutuor, X. Fu, and X. Zhang, “Induction of strong antitumor immunity by an HSV-2-based oncolytic virus in a murine mammary tumor model,” Journal of Gene Medicine, vol. 9, no. 3, pp. 161–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Schadendorf, I. Fichtner, A. Makki et al., “Metastatic potential of human melanoma cells in nude mice—characterisation of phenotype, cytokine secretion and tumour-associated antigens,” British Journal of Cancer, vol. 74, no. 2, pp. 194–199, 1996. View at Scopus
  7. R. E. Roses, E. C. Paulson, A. Sharma et al., “HER-2/neu overexpression as a predictor for the transition from in situ to invasive breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 5, pp. 1385–1389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Tagliabue, A. Balsari, M. Campiglio, and S. M. Pupa, “HER2 as a target for breast cancer therapy,” Expert Opinion on Biological Therapy, vol. 10, no. 5, pp. 711–724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. P. Piechocki, Y. S. Ho, S. Pilon, and W. Z. Wei, “Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines,” Journal of Immunology, vol. 171, no. 11, pp. 5787–5794, 2003. View at Scopus
  10. M. H. Wilson, C. J. Coates, and A. L. George Jr., “PiggyBac transposon-mediated gene transfer in human cells,” Molecular Therapy, vol. 15, no. 1, pp. 139–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Ahmed, M. Ratnayake, B. Savoldo et al., “Regression of experimental medulloblastoma following transfer of HER2-specific T cells,” Cancer Research, vol. 67, no. 12, pp. 5957–5964, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. C. Borley, S. Hiscox, J. Gee et al., “Anti-oestrogens but not oestrogen deprivation promote cellular invasion in intercellular adhesion-deficient breast cancer cells,” Breast Cancer Research, vol. 10, no. 6, article R103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Fu, L. Tao, A. Rivera et al., “A simple and sensitive method for measuring tumor-specific T cell cytotoxicity,” PLoS ONE, vol. 5, no. 7, Article ID e11867, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D. L. Galvan, Y. Nakazawa, A. Kaja et al., “Genome-wide mapping of piggybac transposon integrations in primary human T cells,” Journal of Immunotherapy, vol. 32, no. 8, pp. 837–844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Nakazawa, L. E. Huye, G. Dotti et al., “Optimization of the piggybac transposon system for the sustained genetic modification of human T lymphocytes,” Journal of Immunotherapy, vol. 32, no. 8, pp. 826–836, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. P. Piechocki, S. A. Pilon, C. Kelly, and W. Z. Wei, “Degradation signals in ErbB-2 dictate proteasomal processing and immunogenicity and resist protection by cis glycine-alanine repeat,” Cellular Immunology, vol. 212, no. 2, pp. 138–149, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Penichet, P. M. Challita, S. U. Shin, S. L. Sampogna, J. D. Rosenblatt, and S. L. Morrison, “In vivo properties of three human HER2/neu-expressing murine cell lines in immunocompetent mice,” Laboratory Animal Science, vol. 49, no. 2, pp. 179–188, 1999. View at Scopus
  18. R. A. Morgan, M. E. Dudley, and S. A. Rosenberg, “Adoptive cell therapy: genetic modification to redirect effector cell specificity,” Cancer Journal, vol. 16, no. 4, pp. 336–341, 2010. View at Publisher · View at Google Scholar · View at Scopus