About this Journal Submit a Manuscript Table of Contents
ISRN Toxicology
Volume 2011 (2011), Article ID 248280, 7 pages
http://dx.doi.org/10.5402/2011/248280
Research Article

In Vivo Effects of Antiviral Protein Kinase C Modulators on Zebrafish Development and Survival

1Department of Biology, Chestnut Hill College, Philadelphia, PA 19118, USA
2Fox Chase Cancer Center, Philadelphia, PA 19111, USA

Received 20 October 2011; Accepted 13 November 2011

Academic Editors: R. Konig and S. T. Larsen

Copyright © 2011 Richard V. Davis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. W. Chun, D. Engel, S. B. Mizell et al., “Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy,” Nature Medicine, vol. 5, no. 6, pp. 651–655, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. Kulkosky, D. M. Culnan, J. Roman et al., “Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART,” Blood, vol. 98, no. 10, pp. 3006–3015, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Kulkosky and R. J. Pomerantz, “Approaching eradication of highly active antiretroviral therapy-persistent human immunodeficiency virus type 1 reservoirs with immune activation therapy,” Clinical Infectious Diseases, vol. 35, no. 12, pp. 1520–1526, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. Bray and J. Kulkosky, “HAART-persistent HIV-1 latent reservoirs: their origin, mechanisms of stability and potential strategies for eradication,” Current HIV Research, vol. 4, no. 2, pp. 199–208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. G. Brooks, D. H. Hamer, P. A. Arlen et al., “Molecular characterization, reactivation, and depletion of latent HIV,” Immunity, vol. 19, no. 3, pp. 413–423, 2003. View at Publisher · View at Google Scholar
  6. D. D. Richman, D. M. Margolis, M. Delaney, W. C. Greene, D. Hazuda, and R. J. Pomerantz, “The challenge of finding a cure for HIV infection,” Science, vol. 324, no. 5919, pp. 1264–1265, 2009.
  7. D. Finzi, J. Blankson, D. Siliciano et al., “Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy,” Nature Medicine, vol. 5, no. 5, pp. 512–517, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. Y. D. Korin, D. G. Brooks, S. Brown, A. Korotzer, and J. A. Zack, “Effects of prostratin on T-cell activation and human immunodeficiency virus latency,” Journal of Virology, vol. 76, no. 16, pp. 8118–8123, 2002. View at Publisher · View at Google Scholar
  9. J. Kulkosky, J. Sullivan, Y. Xu, E. Souder, D. H. Hamer, and R. J. Pomerantz, “Expression of latent HAART-persistent HIV type 1 induced by novel cellular activating agents,” AIDS Research and Human Retroviruses, vol. 20, no. 5, pp. 497–505, 2004. View at Scopus
  10. F. X. Wang, J. Sullivan, E. Souder et al., “IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART,” Journal of Clinical Investigation, vol. 115, no. 1, pp. 128–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Perez, A. G. de Vinuesa, G. Sanchez-Duffhues, et al., “Bryostatin-1 synergizes with histone deacteylase inhibitors to reactivate HIV-1 from latency,” Current HIV Research, vol. 8, no. 6, pp. 418–429, 2010.
  12. R. Mehla, S. Bivalkar-Mehla, R. Zhang et al., “Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner,” Plos One, vol. 5, no. 6, pp. 1–15, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. C. A. Slatter, H. Kanji, C. A. Coutts, and D. W. Ali, “Expression of PKC in the developing zebrafish, Danio rerio,” Journal of Neurobiology, vol. 62, no. 4, pp. 425–438, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. R. Etcheberrigaray, M. Tan, I. Dewachtert et al., “Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11141–11146, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. E. M. Griner and M. G. Kazanietz, “Protein kinase C and other diacylglycerol effectors in cancer,” Nature Reviews Cancer, vol. 7, no. 4, pp. 281–294, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. L. Xiao, M. C. Caino, V. A. von Burstin, J. L. Oliva, and M. G. Kazanietz, “Phorbol ester-induced apoptosis and senescence in cancer cell models,” Methods in Enzymology, vol. 446, pp. 123–139, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. L. Chang and M. Karin, “Mammalian MAP kinase signalling cascades,” Nature, vol. 410, no. 6824, pp. 37–40, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. Raingeaud, S. Gupta, J. Rogers et al., “Pro-inflammatory cytokines and environmental stress cause p38 mitogen- activated protein kinase activation by dual phosphorylation on tyrosine and threonine,” Journal of Biological Chemistry, vol. 270, no. 13, pp. 7420–7426, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Do, E. Mainali, P. S. Nagarkatti, and M. Nagarkatti, “Bryostatin-1 in combination with calcium ionophore promotes the maturation of human umbilical cord-blood monocyte-derived dendritic cells capable of activating neonatal alloreactive T cells,” Cellular Immunology, vol. 231, no. 1-2, pp. 8–13, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. M. D. Show, C. M. Hill, M. D. Anway, W. W. Wright, and B. R. Zirkin, “Phosphorylation of Mitogen-Activated Protein Kinase 8 (MAPK8) is associated with germ cell apoptosis and redistribution of the Bcl2-modifying factor (BMF),” Journal of Andrology, vol. 29, no. 3, pp. 338–344, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. P. M. Barr, H. M. Lazarus, B. W. Cooper et al., “Phase II study of bryostatin 1 and vincristine for aggressive non-Hodgkin lymphoma relapsing after an autologous stem cell transplant,” American Journal of Hematology, vol. 84, no. 8, pp. 484–487, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. P. Lam, J. A. Sparano, V. Vinciguerra et al., “Phase II study of paclitaxel plus the protein kinase C inhibitor bryostatin-1 in advanced pancreatic carcinoma,” American Journal of Clinical Oncology, vol. 33, no. 2, pp. 121–124, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. B. D. Smith, R. J. Jones, E. Cho et al., “Differentiation therapy in poor risk myeloid malignancies: results of a dose finding study of the combination bryostatin-1 and GM-CSF,” Leukemia Research, vol. 35, no. 1, pp. 87–94, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M.-K. Sun, J. Hongpaisan, and D. L. Alkon, “Postischemic PKC activation rescues retrograde and anterograde long-term memory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 14676–14680, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M.-K. Sun and D. L. Alkon, “Dual effects of bryostatin-1 on spatial memory and depression,” European Journal of Pharmacology, vol. 512, no. 1, pp. 43–51, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus