Abstract

Let ๐บ be a graph with vertex set ๐‘‰=(๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘›). Let ๐›ฟ(๐‘ฃ๐‘–) be the degree of the vertex ๐‘ฃ๐‘–โˆˆ๐‘‰. If the vertices ๐‘ฃ๐‘–1,๐‘ฃ๐‘–2,โ€ฆ,๐‘ฃ๐‘–โ„Ž+1 form a path of length โ„Žโ‰ฅ1 in the graph ๐บ, then the โ„Žth order Randiฤ‡ index ๐‘…โ„Ž of ๐บ is defined as the sum of the terms ๎”1/๐›ฟ(๐‘ฃ๐‘–1)๐›ฟ(๐‘ฃ๐‘–2)โ‹ฏ๐›ฟ(๐‘ฃ๐‘–โ„Ž+1) over all paths of length โ„Ž contained (as subgraphs) in ๐บ. Lower and upper bounds for ๐‘…โ„Ž, in terms of the vertex degree sequence of its factors, are obtained for corona product graphs. Moreover, closed formulas are obtained when the factors are regular graphs.

1. Introduction

In this work we consider simple graphs ๐บ=(๐‘‰,๐ธ) with ๐‘› vertices and ๐‘š edges. Let ๐‘‰=(๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘›) be the vertex set of ๐บ. For every vertex ๐‘ฃ๐‘–โˆˆ๐‘‰, ๐›ฟ(๐‘ฃ๐‘–) represents the degree of the vertex ๐‘ฃ๐‘– in ๐บ. The maximum and minimum degree of the vertices of ๐บ will be denoted by ฮ” and ๐›ฟ, respectively.

The Randiฤ‡ index ๐‘…1(๐บ) of a graph ๐บ was introduced in 1975 [1] and defined as ๐‘…1๎“(๐บ)=๐‘ฃ๐‘–๐‘ฃ๐‘—โˆˆ๐ธ1๎”๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธ๐›ฟ๎€ท๐‘ฃ๐‘—๎€ธ.(1.1) This graph invariant, sometimes referred to as connectivity index, has been successfully related to a variety of physical, chemical, and pharmacological properties of organic molecules, and it has became into one of the most popular molecular-structure descriptors. After the publication of the first paper [1], mathematical properties of ๐‘…1 were extensively studied, see [2โ€“6] and the references cited therein.

The higher-order Randiฤ‡ indices are also of interest in chemical graph theory. For โ„Žโ‰ฅ1, the โ„Žth order Randiฤ‡ index ๐‘…โ„Ž(๐บ) of a graph ๐บ is defined as ๐‘…โ„Ž๎“(๐บ)=๐‘ฃ๐‘–1๐‘ฃ๐‘–2โ‹ฏ๐‘ฃ๐‘–โ„Ž+1โˆˆ๐’ซโ„Ž(๐บ)1๎‚™๐›ฟ๎€ท๐‘ฃ๐‘–1๎€ธ๐›ฟ๎€ท๐‘ฃ๐‘–2๎€ธ๎‚€๐‘ฃโ‹ฏ๐›ฟ๐‘–โ„Ž+1๎‚,(1.2) where ๐’ซโ„Ž(๐บ) denotes the set of paths of length โ„Ž contained (as subgraphs) in ๐บ. Of the higher-order Randiฤ‡ indices the most frequently applied is ๐‘…2 [7โ€“10]. Estimations of the higher-order Randiฤ‡ index of regular graphs and semiregular bipartite graphs are given in [10]. In this paper we are interested in studying the higher-order Randiฤ‡ index, ๐‘…โ„Ž, for corona product graphs. Roughly speaking, we study the cases โ„Ž=1, โ„Ž=2 for arbitrary graphs and the case โ„Žโ‰ฅ3 when the second factor of the corona product is an empty graph. As an example of a chemical compound whose graph is obtained as a corona product graph we consider the Cycloalkanes with a single ring, whose chemical formula is ๐ถ๐‘˜๐ป2๐‘˜, and whose molecular graph can be expressed as ๐ถ๐‘˜โŠ™๐‘2, where ๐ถ๐‘˜ is the cycle graph of order ๐‘˜ and ๐‘2 is the empty graph of order two. We recall that, given two graphs ๐บ and ๐ป of order ๐‘›1 and ๐‘›2, respectively, the corona product ๐บโŠ™๐ป is defined as the graph obtained from ๐บ and ๐ป by taking one copy of ๐บ and ๐‘›1 copies of ๐ป and then joining by an edge each vertex of the ๐‘–th copy of ๐ป with the ๐‘–th vertex of ๐บ.

2. Estimating ๐‘…โ„Ž for Corona Graphs

Theorem 2.1. For ๐‘–โˆˆ{1,2}, let ๐บ๐‘– be a graph of minimum degree ๐›ฟ๐‘–, maximum degree ฮ”๐‘–, order ๐‘›๐‘– and size ๐‘š๐‘–. Then, ๐‘…1๎€ท๐บ1โŠ™๐บ2๎€ธโ‰ค๐‘š1๐›ฟ1+๐‘›2+๐‘›1๐‘š2๐›ฟ2+๐‘›+11๐‘›2๎”๎€ท๐›ฟ1+๐‘›2๐›ฟ๎€ธ๎€ท2๎€ธ,๐‘…+11๎€ท๐บ1โŠ™๐บ2๎€ธโ‰ฅ๐‘š1ฮ”1+๐‘›2+๐‘›1๐‘š2ฮ”2+๐‘›+11๐‘›2๎”๎€ทฮ”1+๐‘›2ฮ”๎€ธ๎€ท2๎€ธ.+1(2.1)

Proof. Let ๐บ๐‘–=(๐‘‰๐‘–,๐ธ๐‘–), ๐‘–โˆˆ{1,2}, and let ๐บ1โŠ™๐บ2=(๐‘‰,๐ธ). We have ๐‘…1๎€ท๐บ1โŠ™๐บ2๎€ธ=๎“๐‘ฅ๐‘ฆโˆˆ๐ธ1โˆš๐›ฟ(๐‘ฅ)๐›ฟ(๐‘ฆ)=๐‘„1+๐‘„2+๐‘„3,(2.2) where ๐‘„1=๎“๐‘Ž๐‘โˆˆ๐ธ11๎”๎€ท๐›ฟ(๐‘Ž)+๐‘›2๎€ธ๎€ท๐›ฟ(๐‘)+๐‘›2๎€ธโ‰ฅ๐‘š1ฮ”1+๐‘›2,๐‘„2=๎“๐‘ข๐‘ฃโˆˆ๐ธ21โˆšโ‰ฅ๐‘›(๐›ฟ(๐‘ข)+1)(๐›ฟ(๐‘ฃ)+1)1๐‘š2ฮ”2,๐‘„+13=๎“๐‘Žโˆˆ๐‘‰1,๐‘ขโˆˆ๐‘‰21๎”๎€ท๐›ฟ(๐‘Ž)+๐‘›2๎€ธโ‰ฅ๐‘›(๐›ฟ(๐‘ข)+1)1๐‘›2๎”๎€ทฮ”1+๐‘›2ฮ”๎€ธ๎€ท2๎€ธ.+1(2.3) Thus, the lower bound follows. Analogously we deduce the upper bound.

Corollary 2.2. For ๐‘–โˆˆ{1,2}, let ๐บ๐‘– be a ๐›ฟ๐‘–-regular graph of order ๐‘›๐‘–. Then, ๐‘…1๎€ท๐บ1โŠ™๐บ2๎€ธ=๐‘›1๐›ฟ12๎€ท๐›ฟ1+๐‘›2๎€ธ+๐‘›1๐‘›2๐›ฟ22๎€ท๐›ฟ2๎€ธ+๐‘›+11๐‘›2๎”๎€ท๐›ฟ1+๐‘›2๐›ฟ๎€ธ๎€ท2๎€ธ+1.(2.4)

Theorem 2.3. For ๐‘–โˆˆ{1,2}, let ๐บ๐‘– be a graph of minimum degree ๐›ฟ๐‘–, maximum degree ฮ”๐‘–, order ๐‘›๐‘–, and size ๐‘š๐‘–. Then, ๐‘…2๎€ท๐บ1โŠ™๐บ2๎€ธโ‰ค๐‘›1๎€ท๐›ฟ2๎€ธโˆš+1๐›ฟ1+๐‘›2๎ƒฉ๐‘›2๎€ท๐‘›2๎€ธโˆ’12+2๐‘š2๎ƒช+1๐›ฟ1+๐‘›2โŽ›โŽœโŽœโŽœโŽ2๐‘›2๐‘š1โˆš๐›ฟ2+๎“+1๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธโ‰ฅ2๐›ฟ๎€ท๐‘ฃ๐‘–๐›ฟ๎€ท๐‘ฃ๎€ธ๎€ท๐‘–๎€ธ๎€ธโˆ’12๎”๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธ+๐‘›2โŽžโŽŸโŽŸโŽŸโŽ +12๎€ท๐›ฟ2๎€ธ๎“+1๐›ฟ๎€ท๐‘ข๐‘–๎€ธโ‰ฅ2๐›ฟ๎€ท๐‘ข๐‘–๐›ฟ๎€ท๐‘ข๎€ธ๎€ท๐‘–๎€ธ๎€ธโˆ’1๎”๐›ฟ๎€ท๐‘ข๐‘–๎€ธ,๐‘…+12๎€ท๐บ1โŠ™๐บ2๎€ธโ‰ฅ๐‘›1๎€ทฮ”2๎€ธโˆš+1ฮ”1+๐‘›2๎ƒฉ๐‘›2๎€ท๐‘›2๎€ธโˆ’12+2๐‘š2๎ƒช+1ฮ”1+๐‘›2โŽ›โŽœโŽœโŽœโŽ2๐‘›2๐‘š1โˆšฮ”2+๎“+1๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธโ‰ฅ2๐›ฟ๎€ท๐‘ฃ๐‘–๐›ฟ๎€ท๐‘ฃ๎€ธ๎€ท๐‘–๎€ธ๎€ธโˆ’12๎”๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธ+๐‘›2โŽžโŽŸโŽŸโŽŸโŽ +12๎€ทฮ”2๎€ธ๎“+1๐›ฟ๎€ท๐‘ข๐‘–๎€ธโ‰ฅ2๐›ฟ๎€ท๐‘ข๐‘–๐›ฟ๎€ท๐‘ข๎€ธ๎€ท๐‘–๎€ธ๎€ธโˆ’1๎”๐›ฟ๎€ท๐‘ข๐‘–๎€ธ.+1(2.5)

Proof. Let ๐‘‰1={๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘›1} and ๐‘‰2={๐‘ข1,๐‘ข2,โ€ฆ,๐‘ข๐‘›2} be the set of vertices of ๐บ1 and ๐บ2, respectively. Given a vertex ๐‘ฃโˆˆ๐‘‰๐‘–, we denote by ๐‘๐บ๐‘–(๐‘ฃ) the set of neighbors that ๐‘ฃ has in ๐บ๐‘–. The paths of length two in ๐บ1โŠ™๐บ2 are obtained as follows: (i)paths ๐‘ข๐‘–๐‘ฃ๐‘—๐‘ข๐‘˜, ๐‘–โ‰ ๐‘˜, where ๐‘ข๐‘–,๐‘ข๐‘˜โˆˆ๐‘‰2 and ๐‘ฃ๐‘—โˆˆ๐‘‰1, (ii)paths ๐‘ข๐‘–๐‘ฃ๐‘—๐‘ฃ๐‘˜, ๐‘—โ‰ ๐‘˜, where ๐‘ข๐‘–โˆˆ๐‘‰2 and ๐‘ฃ๐‘—๐‘ฃ๐‘˜โˆˆ๐‘‰1, (iii)paths ๐‘ฃ๐‘–๐‘ข๐‘—๐‘ข๐‘˜, ๐‘—โ‰ ๐‘˜, where ๐‘ฃ๐‘–โˆˆ๐‘‰1 and ๐‘ข๐‘—,๐‘ข๐‘˜โˆˆ๐‘‰2, (iv)paths of length two belonging to ๐บ1, (v)paths of length two belonging to the ๐‘›1 copies of ๐บ2.
So, we have ๐‘…2(๐บ1โŠ™๐บ2โˆ‘)=5๐‘–=1๐‘„๐‘–, where ๐‘„1=๎“๐‘ฃ๐‘—โˆˆ๐‘‰1;๐‘ข๐‘–,๐‘ข๐‘˜โˆˆ๐‘‰21๎”๎€ท๐›ฟ๎€ท๐‘ข๐‘–๎€ธ๐›ฟ๎€ท๐‘ฃ+1๎€ธ๎€ท๐‘—๎€ธ+๐‘›2๐›ฟ๎€ท๐‘ข๎€ธ๎€ท๐‘˜๎€ธ๎€ธ=+1๐‘›1๎“๐‘—=11๎”๐›ฟ๎€ท๐‘ฃ๐‘—๎€ธ+๐‘›2โ‹…๐‘›2โˆ’1๎“๐‘›๐‘–=12๎“๐‘™=๐‘–+11๎”๎€ท๐›ฟ๎€ท๐‘ข๐‘–๎€ธ๐›ฟ๎€ท๐‘ข+1๎€ธ๎€ท๐‘™๎€ธ๎€ธโ‰ฅ๐‘›+11๐‘›2๎€ท๐‘›2๎€ธโˆ’12๎€ทฮ”2๎€ธโˆš+1ฮ”1+๐‘›2(2.6) corresponds to the paths type (i), ๐‘„2=๎“๐‘ข๐‘–โˆˆ๐‘‰2;๐‘ฃ๐‘—,๐‘ฃ๐‘˜โˆˆ๐‘‰11๎”๎€ท๐›ฟ๎€ท๐‘ข๐‘–๎€ธ๐›ฟ๎€ท๐‘ฃ+1๎€ธ๎€ท๐‘—๎€ธ+๐‘›2๐›ฟ๎€ท๐‘ฃ๎€ธ๎€ท๐‘˜๎€ธ+๐‘›2๎€ธ=๐‘›2๎“๐‘–=11๎”๐›ฟ๎€ท๐‘ข๐‘–๎€ธโ‹…+1๐‘›1๎“๐‘—=1๎“๐‘ฃ๐‘™โˆˆ๐‘๐บ1(๐‘ฃ๐‘—)1๎”๎€ท๐›ฟ๎€ท๐‘ฃ๐‘—๎€ธ+๐‘›2๐›ฟ๎€ท๐‘ฃ๎€ธ๎€ท๐‘™๎€ธ+๐‘›2๎€ธโ‰ฅ2๐‘š1๐‘›2๎€ทฮ”1+๐‘›2๎€ธโˆšฮ”2+1(2.7) corresponds to the paths type (ii), ๐‘„3=๎“๐‘ฃ๐‘–โˆˆ๐‘‰1;๐‘ข๐‘—,๐‘ข๐‘˜โˆˆ๐‘‰21๎”๎€ท๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธ+๐‘›2๐›ฟ๎€ท๐‘ข๎€ธ๎€ท๐‘—๎€ธ๐›ฟ๎€ท๐‘ข+1๎€ธ๎€ท๐‘˜๎€ธ๎€ธ=+1๐‘›1๎“๐‘–=11๎”๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธ+๐‘›2โ‹…๐‘›2๎“๐‘—=1๎“๐‘ข๐‘™โˆˆ๐‘๐บ2(๐‘ข๐‘—)1๎”๎€ท๐›ฟ๎€ท๐‘ข๐‘—๎€ธ๐›ฟ๎€ท๐‘ข+1๎€ธ๎€ท๐‘™๎€ธ๎€ธโ‰ฅ+12๐‘›1๐‘š2๎€ทฮ”2๎€ธโˆš+1ฮ”1+๐‘›2(2.8) corresponds to the paths type (iii), ๐‘„4=๎“๐‘ฃ๐‘–๐‘ฃ๐‘—๐‘ฃ๐‘˜๎€ท๐บโˆˆ๐’ซ1๎€ธ1๎”๎€ท๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธ+๐‘›2๐›ฟ๎€ท๐‘ฃ๎€ธ๎€ท๐‘—๎€ธ+๐‘›2๐›ฟ๎€ท๐‘ฃ๎€ธ๎€ท๐‘˜๎€ธ+๐‘›2๎€ธโ‰ฅ12๎€ทฮ”1+๐‘›2๎€ธ๎“๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธโ‰ฅ2๐›ฟ๎€ท๐‘ฃ๐‘–๐›ฟ๎€ท๐‘ฃ๎€ธ๎€ท๐‘–๎€ธ๎€ธโˆ’1๎”๐›ฟ๎€ท๐‘ฃ๐‘–๎€ธ+๐‘›2(2.9) corresponds to the paths type (iv), and ๐‘„5=๎“๐‘ข๐‘–๐‘ข๐‘—๐‘ข๐‘˜๎€ท๐บโˆˆ๐’ซ2๎€ธ1๎”๎€ท๐›ฟ๎€ท๐‘ข๐‘–๎€ธ๐›ฟ๎€ท๐‘ข+1๎€ธ๎€ท๐‘—๎€ธ๐›ฟ๎€ท๐‘ข+1๎€ธ๎€ท๐‘˜๎€ธ๎€ธโ‰ฅ1+12๎€ทฮ”2๎€ธ๎“+1๐›ฟ๎€ท๐‘ข๐‘–๎€ธโ‰ฅ2๐›ฟ๎€ท๐‘ข๐‘–๐›ฟ๎€ท๐‘ข๎€ธ๎€ท๐‘–๎€ธ๎€ธโˆ’1๎”๐›ฟ๎€ท๐‘ข๐‘–๎€ธ+1(2.10) corresponds to the paths type (v). Thus, the lower bound follows. The upper bound is obtained by analogy.

Corollary 2.4. For ๐‘–โˆˆ{1,2}, let ๐บ๐‘– be a ๐›ฟ๐‘–-regular graph of order ๐‘›๐‘–. Then, ๐‘…2๎€ท๐บ1โŠ™๐บ2๎€ธ=๐‘›1๐‘›2๎€ท๐›ฟ2๎€ธโˆš+1๐›ฟ1+๐‘›2๎‚ต๐‘›2โˆ’12+๐›ฟ2๎‚ถ+๐‘›1๐›ฟ12๎€ท๐›ฟ1+๐‘›2๎€ธ๎ƒฉ2๐‘›2โˆš๐›ฟ2+๐›ฟ+11โˆ’1โˆš๐›ฟ1+๐‘›2๎ƒช+๐‘›2๐›ฟ2๎€ท๐›ฟ2๎€ธโˆ’12๎€ท๐›ฟ2๎€ธโˆš+1๐›ฟ2.+1(2.11)

The girth of a graph is the size of its smallest cycle. For instance, the molecular graphs of benzenoid hydrocarbons have girth 6. The molecular graphs of biphenylene and azulene have girth 4 and 5, respectively [11].

The following result, and its proof, was implicitly obtained in the proof of Theorem 1 of [10]. By completeness, here we present it as a separate result.

Lemma 2.5. Let ๐บ=(๐‘‰,๐ธ) be a graph with girth ๐‘”(๐บ). If ๐›ฟโ‰ฅ2 and ๐‘”(๐บ)>โ„Ž, then the number of paths of length โ„Ž in ๐บ is bounded by (๐›ฟโˆ’1)โ„Žโˆ’22๎“๐‘ขโˆˆ๐‘‰||๐’ซ๐›ฟ(๐‘ข)(๐›ฟ(๐‘ข)โˆ’1)โ‰คโ„Ž||โ‰ค(๐บ)(ฮ”โˆ’1)โ„Žโˆ’22๎“๐‘ขโˆˆ๐‘‰๐›ฟ(๐‘ข)(๐›ฟ(๐‘ข)โˆ’1).(2.12)

Proof. Since ๐›ฟโ‰ฅ2, for every ๐‘ฃโˆˆ๐‘‰, the number of paths of length 2 in ๐บ of the form ๐‘ฃ๐‘–๐‘ฃ๐‘ฃ๐‘— is ๐›ฟ(๐‘ฃ)(๐›ฟ(๐‘ฃ)โˆ’1)/2. Therefore, the result follows for โ„Ž=2.
Suppose now that โ„Žโ‰ฅ3. Given a vertex ๐‘ขโˆˆ๐‘‰, let ๐’ซโ„Ž(๐‘ข) be the set of paths of length โ„Ž whose second vertex is ๐‘ข, that is, paths of the form ๐‘ข1๐‘ข๐‘ข2โ‹ฏ๐‘ขโ„Ž. We denote by ๐‘(๐‘ฃ) the set of neighbors of an arbitrary vertex ๐‘ฃโˆˆ๐‘‰. Note that the degree of ๐‘ฃ is ๐›ฟ(๐‘ฃ)=|๐‘(๐‘ฃ)|. If ๐›ฟโ‰ฅ2, then for every ๐‘ฃโˆˆ๐‘‰ and ๐‘คโˆˆ๐‘(๐‘ฃ) we have ๐‘(๐‘ค)โงต{๐‘ฃ}โ‰ โˆ…. So, for every ๐‘ขโˆˆ๐‘‰, there exists a vertex sequence ๐‘ข1๐‘ข๐‘ข2โ‹ฏ๐‘ขโ„Ž such that ๐‘ข1,๐‘ข2โˆˆ๐‘(๐‘ข), ๐‘ข3โˆˆ๐‘(๐‘ข2)โงต{๐‘ข}, ๐‘ข4โˆˆ๐‘(๐‘ข3)โงต{๐‘ข2},โ€ฆ,and๐‘ขโ„Žโˆˆ๐‘(๐‘ขโ„Žโˆ’1)โงต{๐‘ขโ„Žโˆ’2}. If ๐‘”(๐บ)>โ„Ž, then the sequence ๐‘ข1๐‘ข๐‘ข2โ‹ฏ๐‘ขโ„Ž is a path. Conversely, every path of length โ„Ž whose second vertex is ๐‘ข can be constructed as above. Hence, the number of paths of length โ„Ž whose second vertex is ๐‘ข is bounded by ||๐’ซโ„Ž(||๐‘ข)โ‰ฅmin๐‘ข1๐‘ข๐‘ข2โ‹ฏ๐‘ขโ„Žโˆˆ๐’ซโ„Ž(๐‘ข)๎ƒฏ๐›ฟ(๐‘ข)(๐›ฟ(๐‘ข)โˆ’1)โ„Žโˆ’1๎‘๐‘—=2๎€ท๐›ฟ๎€ท๐‘ข๐‘—๎€ธ๎€ธ๎ƒฐโˆ’1โ‰ฅ๐›ฟ(๐‘ข)(๐›ฟ(๐‘ข)โˆ’1)(๐›ฟโˆ’1)โ„Žโˆ’2,||๐’ซโ„Ž||(๐‘ข)โ‰คmax๐‘ข1๐‘ข๐‘ข2โ‹ฏ๐‘ขโ„Žโˆˆ๐’ซโ„Ž(๐‘ข)๎ƒฏ๐›ฟ(๐‘ข)(๐›ฟ(๐‘ข)โˆ’1)โ„Žโˆ’1๎‘๐‘—=2๎€ท๐›ฟ๎€ท๐‘ข๐‘—๎€ธ๎€ธ๎ƒฐโˆ’1โ‰ค๐›ฟ(๐‘ข)(๐›ฟ(๐‘ข)โˆ’1)(ฮ”โˆ’1)โ„Žโˆ’2.(2.13) Thus, the result follows.

Now ๐‘๐‘˜ denotes the empty graph of order ๐‘˜.

Theorem 2.6. Let ๐บ=(๐‘‰,๐ธ) be a graph with girth ๐‘”(๐บ), minimum degree ๐›ฟ, and maximum degree ฮ”. If ๐›ฟโ‰ฅ2 and ๐‘”(๐บ)>โ„Žโ‰ฅ3, then ๐‘…โ„Ž๎€ท๐บโŠ™๐‘๐‘˜๎€ธโ‰ค๎ƒฉฮ”โˆ’12โˆš๎ƒช๐›ฟ+๐‘˜+๐‘˜(ฮ”โˆ’1)โ„Žโˆ’3(๐›ฟ+๐‘˜)โ„Ž/2๎“๐‘ขโˆˆ๐‘‰๐‘…๐›ฟ(๐‘ข)(๐›ฟ(๐‘ข)โˆ’1),โ„Ž๎€ท๐บโŠ™๐‘๐‘˜๎€ธโ‰ฅ๎ƒฉ๐›ฟโˆ’12โˆš๎ƒชฮ”+๐‘˜+๐‘˜(๐›ฟโˆ’1)โ„Žโˆ’3(ฮ”+๐‘˜)โ„Ž/2๎“๐‘ขโˆˆ๐‘‰๐›ฟ(๐‘ข)(๐›ฟ(๐‘ข)โˆ’1).(2.14)

Proof. The paths of length โ„Ž in ๐บ contribute to Rโ„Ž(๐บโŠ™๐‘๐‘˜) in ๎“๐‘ฃ๐‘–1๐‘ฃ๐‘–2โ‹ฏ๐‘ฃ๐‘–โ„Ž+1โˆˆ๐’ซโ„Ž(๐บ)1๎”โˆโ„Ž+1๐‘™=1๎€ท๐›ฟ๎€ท๐‘ฃ๐‘–๐‘™๎€ธ๎€ธ+๐‘˜.(2.15) Moreover, each path of length โ„Žโˆ’1 in ๐บ leads to 2๐‘˜ paths of length โ„Ž in ๐บโŠ™๐‘๐‘˜; thus, the paths of length โ„Žโˆ’1 in ๐บ contribute to ๐‘…โ„Ž(๐บโŠ™๐‘๐‘˜) in ๎“๐‘ฃ๐‘–1๐‘ฃ๐‘–2โ‹ฏ๐‘ฃ๐‘–โ„Žโˆˆ๐’ซโ„Žโˆ’1(๐บ)2๐‘˜๎”โˆโ„Ž๐‘™=1๎€ท๐›ฟ๎€ท๐‘ฃ๐‘–๐‘™๎€ธ๎€ธ+๐‘˜.(2.16) Hence, ๐‘…โ„Ž๎€ท๐บโŠ™๐‘๐‘˜๎€ธ=๎“๐‘ฃ๐‘–1๐‘ฃ๐‘–2โ‹ฏ๐‘ฃ๐‘–โ„Ž+1โˆˆ๐’ซโ„Ž(๐บ)1๎”โˆโ„Ž+1๐‘™=1๎€ท๐›ฟ๎€ท๐‘ฃ๐‘–๐‘™๎€ธ๎€ธ+๎“+๐‘˜๐‘ฃ๐‘–1๐‘ฃ๐‘–2โ‹ฏ๐‘ฃ๐‘–โ„Žโˆˆ๐’ซโ„Žโˆ’1(๐บ)2๐‘˜๎”โˆโ„Ž๐‘™=1๎€ท๐›ฟ๎€ท๐‘ฃ๐‘–๐‘™๎€ธ๎€ธโ‰ค||๐’ซ+๐‘˜โ„Ž(||๐บ)โˆš(๐›ฟ+๐‘˜)โ„Ž+1||๐’ซ+2๐‘˜โ„Žโˆ’1(||๐บ)โˆš(๐›ฟ+๐‘˜)โ„Ž.(2.17) By Lemma 2.5 we obtain the upper bound and the lower bound is obtained by analogy.

Corollary 2.7. Let ๐บ=(๐‘‰,๐ธ) be a ๐›ฟ-regular graph of order ๐‘› and girth ๐‘”(๐บ). If ๐›ฟโ‰ฅ2 and ๐‘”(๐บ)>โ„Žโ‰ฅ3, then ๐‘…โ„Ž๎€ท๐บโŠ™๐‘๐‘˜๎€ธ=๎ƒฉ๐›ฟโˆ’12โˆš๎ƒช๐›ฟ+๐‘˜+๐‘˜๐‘›๐›ฟ(๐›ฟโˆ’1)โ„Žโˆ’2(๐›ฟ+๐‘˜)โ„Ž/2.(2.18)

Acknowledgment

This work was partly supported by the Spanish Government through projects TSI2007-65406-C03-01 โ€œE-AEGISโ€ and CONSOLIDER INGENIO 2010 CSD2007-00004 โ€œARES.โ€