About this Journal Submit a Manuscript Table of Contents
ISRN Astronomy and Astrophysics
Volume 2011 (2011), Article ID 341919, 7 pages
http://dx.doi.org/10.5402/2011/341919
Research Article

New Black Holes Solutions in a Modified Gravity

1Departamento de Física, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari s/n, Campus de Goiabeiras, 29075-910 Vitória, ES, Brazil
2Instituto de Física, Universidade Federal da Bahia, Salvador, BA 40210-340, Brazil
3ICRACBPF-Rua Dr. Xavier Sigaud, 150, 180, CEP22290-Urca, Rio de Janeiro, Brazil

Received 2 November 2011; Accepted 4 December 2011

Academic Editor: A. Ferrari

Copyright © 2011 M. Hamani Daouda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Nakamura, et al., “Review of particle physics,” Journal of Physics G, vol. 37, no. 7, Article ID 075021, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Bhattacharyya, “A pedagogical review of electroweak symmetry breaking scenarios,” Reports on Progress in Physics, vol. 74, no. 2, Article ID 026201, 2011. View at Publisher · View at Google Scholar
  3. H. Weyl, “Gravitation und elektrizitat,” Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, vol. 26, pp. 465–480, 1918.
  4. H. Weyl, Reprinted in: The Principles of Relativity, Dover, New York, NY, USA, 1922.
  5. H. Weyl, “Feld und materie,” Annals of Physics, vol. 65, pp. 541–563, 1921.
  6. H. Weyl, “Relativity symposium,” Nature, vol. 106, no. 2677, p. 781, 1921.
  7. J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton, NJ, USA, 1992.
  8. T. Ortin, Gravity and Strings, Cambridge University Press, New York, NY, USA, 2004.
  9. L. Smolin, “An invitation to loop quantum gravity,” High Energy Physics—Theory, 2005, arXiv:hep-th/0408048v3.
  10. J. Dunkley, E. Komatsu, M. R. Nolta, et al., “Five-year wilkinson microwave anisotropy probe (WMAP) observations: likelihoods and parameters from the WMAP data,” Astrophysics, vol. 180, pp. 306–329, 2009, WMAP Collaboration. View at Publisher · View at Google Scholar
  11. A. G. Riess, “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astrophysics, vol. 116, pp. 1009–1038, 1998. View at Publisher · View at Google Scholar
  12. S. Permultter, G. Aldering, G. Goldhaber, et al., “Measurements of omega and lambda from 42 high redshift supernovae,” Astrophysics, vol. 517, pp. 565–586, 1998. View at Publisher · View at Google Scholar
  13. J. D. Bekenstein, “Cosmological evolution of domain wall networks,” Physical Review D, vol. 70, no. 8, Article ID 083509, 7 pages, 2004, Erratum-Ibid D, vol. 71, Article ID 069901, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Capozziello and V. Faraoni, Beyond Einstein Gravity, A Survey of Gravitational Theories for Cosmology and Astrophysics, vol. 170 of Fundamental Theories of Physics, New York, NY, USA, 2011.
  15. S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models,” Physics Reports, vol. 505, no. 2–4, pp. 59–144, 2011. View at Publisher · View at Google Scholar
  16. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, “Dark energy in modified Gauss-Bonnet gravity: late-time acceleration and the hierarchy problem,” Physical Review D, vol. 73, no. 8, Article ID 084007, 16 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Antoniadis, J. Rizos, and K. Tamvakis, “Singularity-free cosmological solutions of the superstring effective action,” Nuclear Physics B, vol. 415, no. 2, pp. 497–514, 1994. View at Scopus
  18. S. D. Odintsov, T. Harko, S. N. L. Francisco, and S. Nojiri, “f(R, T) gravity,” Physical Review D, vol. 84, Article ID 024020, 11 pages, 2011. View at Publisher · View at Google Scholar
  19. M. H. Daouda, M. E. Rodrigues, and M. J. S. Houndjo, “Static anisotropic solutions in f(T) theory,” Physics, 2011, arXiv:1109.0528v1.
  20. R. Aldrovandi and J. G. Pereira, An Introduction to Teleparallel Gravity, Instituto de Fisica Teorica, UNSEP, Sao Paulo, Brazil, http://www.ift.unesp.br/gcg/tele.pdf.
  21. M. Camenzind, “Weak and strong sources of gravity: an SO(1, 3)-gauge theory of gravity,” Physical Review D, vol. 18, no. 4, pp. 1068–1081, 1978. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Mignani, E. Pessa, and R. Resconi, “Non-conservative gravitational equations,” General Relativity and Gravitation, vol. 29, no. 8, pp. 1049–1073, 1997.
  23. F. W. Dyson, A. S. E. Eddington, and C. R. Davidson, “A determination of the deflection of light by the sun's gravitational field, from observations made at the total eclipse of May 29, 1919,” Philosophical Transactions of the Royal Society A, vol. 220, no. 571–581, pp. 291–333, 1920. View at Publisher · View at Google Scholar
  24. D. Kennefick, “Not only because of theory: dyson, eddington and the competing myths of the 1919 eclipse expedition,” Physics, 2009, arXiv:0709.0685v2.
  25. E. B. Fomalont and R. A. Sramek, “Measurements of the solar gravitational deflection of radio waves in agreement with general relativity,” Physical Review Letters, vol. 36, no. 25, pp. 1475–1478, 1976. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Licata and A. Sakaji, “Gauge generalized principle for complex systems,” in Physics of Emergence and Organization, G. Resconi, Ed., pp. 27–60, World Scientific, Singapore, 2008.
  27. N. V. Mitskievich, “Relativistic physics in arbitrary reference frames,” General Relativity and Quantum Cosmology, 1996, arXiv:gr-qc/9606051v1.
  28. R. Mignani, E. Pessa, and G. Resconi, “Commutative diagrams and tensor calculus in Riemann spaces,” Nuovo Cimento B, vol. 108, no. 12, pp. 1319–1331, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Rastall, “Generalization of the Einstein theory,” Physical Review D, vol. 6, no. 12, pp. 3357–3359, 1972. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Moriyasu, An Elementary Primer for Gauge Theory, World Scientific Publishing Co Pte Ltd, Singapore, 1983.
  31. T. Kawai, “Teleparallel theory of (2+1)-dimensional gravity,” Physical Review D, vol. 48, no. 12, pp. 5668–5675, 1993. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Adak, M. Kalay, and O. Sert, “Lagrange formulation of the symmetric teleparallel gravity,” International Journal of Modern Physics D, vol. 15, no. 5, pp. 619–634, 2006. View at Publisher · View at Google Scholar
  33. S. Capozziello and M. D. Laurentis, “Extended theories of gravity,” General Relativity and Quantum Cosmology, 2011, arXiv:1108.6266v2.
  34. T. Clifton, “Spherically symmetric solutions to fourth-order theories of gravity,” Classical and Quantum Gravity, vol. 23, Article ID 7445, 2006. View at Publisher · View at Google Scholar
  35. D. Grumiller, “Model for gravity at large distances,” Physical Review Letters, vol. 105, no. 21, Article ID 211303, 4 pages, 2010, Erratum-Ibid, vol. 106, Article ID 039901, 2011. View at Publisher · View at Google Scholar
  36. P. D. Mannheim and D. Kazanas, “Exact vacuum solution to conformal Weyl gravity and galactic rotation curves,” Astrophysical Journal, vol. 342, pp. 635–638, 1989.