Abstract

Let ๐‘… be a commutative ring and ๐ผ an ideal of ๐‘… . The zero-divisor graph of ๐‘… with respect to ๐ผ , denoted ฮ“ ๐ผ ( ๐‘… ), is the undirected graph whose vertex set is { ๐‘ฅ โˆˆ ๐‘… โงต ๐ผ | ๐‘ฅ ๐‘ฆ โˆˆ ๐ผ for some ๐‘ฆ โˆˆ ๐‘… โงต ๐ผ } with two distinct vertices ๐‘ฅ and ๐‘ฆ joined by an edge when ๐‘ฅ ๐‘ฆ โˆˆ ๐ผ . In this paper, we extend the definition of the ideal-based zero-divisor graph to noncommutative rings.

1. Introduction

Throughout ๐‘… will denote an associative ring which will be noncommutative unless otherwise specified. The term ideal will always mean two-sided ideal.

In [1], the zero-divisor graph of a commutative ring ๐‘… is defined to be the undirected graph whose vertices are the nonzero zero-divisors of ๐‘… , and where ๐‘ฅ โˆ’ ๐‘ฆ is an edge whenever ๐‘ฅ ๐‘ฆ = 0 . This definition is the basis for several further articles [2โ€“4]) examining the relationship between the algebraic structure of a ring and the nature of the resulting graph. The zero-divisor graph has been extended to other algebraic structures in [5, 6].

In [7], this concept was generalized to noncommutative rings in two different ways. An element ๐‘ฅ in a noncommutative ring ๐‘… is a zero-divisor if either ๐‘ฅ ๐‘ฆ = 0 or ๐‘ฆ ๐‘ฅ = 0 for some nonzero ๐‘ฆ โˆˆ ๐‘… . For a ring ๐‘… (not necessarily with multiplicative identity), define a directed graph ฮ“ ( ๐‘… ) whose vertices are the nonzero zero-divisors of ๐‘… , and where ๐‘ฅ โ†’ ๐‘ฆ is a directed edge between vertices ๐‘ฅ and ๐‘ฆ if and only if ๐‘ฅ ๐‘ฆ = 0 . If one views each undirected edge ๐‘ฅ โˆ’ ๐‘ฆ as the pair of directed edges ๐‘ฅ โ†’ ๐‘ฆ and ๐‘ฆ โ†’ ๐‘ฅ , then this definition agrees with the above for a commutative ring.

The second definition of the zero-divisor graph introduced in [7] produces an undirected graph. For a ring ๐‘… , define a graph ฮ“ ( ๐‘… ) whose vertices are the nonzero zero-divisors of ๐‘… and where ๐‘ฅ โˆ’ ๐‘ฆ is an edge if either ๐‘ฅ ๐‘ฆ = 0 or ๐‘ฆ ๐‘ฅ = 0 . One can think of ฮ“ ( ๐‘… ) as the graph ฮ“ ( ๐‘… ) with all directed edges replaced by undirected edges. Given any ring ๐‘… , ฮ“ ( ๐‘… ) is connected [7, Theorem 3.2]. (Note that a vertex is never considered adjacent to itself in any of these definitions.)

Fuchs in [8] introduced and studied primal ideals in a commutative ring. Let ๐‘… be a commutative ring. An element ๐‘Ž โˆˆ ๐‘… is called prime to an ideal ๐ผ of ๐‘… if ๐‘Ÿ ๐‘Ž โˆˆ ๐ผ (where ๐‘Ÿ โˆˆ ๐‘… ) implies that ๐‘Ÿ โˆˆ ๐ผ . Denote by ๐‘† ( ๐ผ ) the set of elements of ๐‘… that are not prime to ๐ผ . A proper ideal ๐ผ of ๐‘… is said to be primal if ๐‘† ( ๐ผ ) forms an ideal; this ideal is always a prime ideal, called the adjoint ideal ๐‘ƒ of ๐ผ . In this case, we also say that ๐ผ is a ๐‘ƒ -primal ideal of ๐‘… .

Later in 1956, Barnes in [9], generalized the concept of primal ideals in noncommutative rings. Let ๐ผ be an ideal of ๐‘… and let ๐‘ฅ be an element of ๐‘… . Set ๐ผ ๐‘ฅ โˆ’ 1 = { ๐‘ฆ โˆˆ ๐‘… โˆถ ๐‘ฆ ๐‘… ๐‘ฅ โŠ† ๐ผ } . Evidently ๐ผ ๐‘ฅ โˆ’ 1 is an ideal of ๐‘… containing ๐ผ . The element ๐‘ฅ โˆˆ ๐‘… is not right prime (nrp) to ๐ผ if ๐ผ ๐‘ฅ โˆ’ 1 โ‰  ๐ผ . Otherwise, ๐‘ฅ is right prime (rp) to ๐ผ . Denote by ๐‘† ๐‘Ÿ ( ๐ผ ) the set of elements of ๐‘… that are nrp to ๐ผ . The ideal ๐ผ of ๐‘… is called a right primal ideal of ๐‘… if ๐‘† ๐‘Ÿ ( ๐ผ ) forms an ideal of ๐‘… , which is then termed the adjoint ideal of ๐ผ . The set ๐‘† ๐‘™ ( ๐ผ ) and the concept of left primal ideals is defined in a similar way.

By a prime ideal we mean an ideal which is prime in the sense of McCoy [10], that is, ๐‘ƒ is a prime ideal of ๐‘… if ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐‘ƒ implies that ๐‘ฅ or ๐‘ฆ is in ๐‘ƒ . McCoy has shown that this is equivalent to the property that if ๐‘ƒ divides the product of two ideals then ๐‘ƒ must divide at least one of them. An ideal ๐ผ of ๐‘… is said to be a semiprime ideal if, for ๐‘Ž โˆˆ ๐‘… , ๐‘Ž ๐‘… ๐‘Ž โŠ† ๐ผ implies that ๐‘Ž โˆˆ ๐ผ . It is clear that every prime ideal is semiprime. A nonempty subset ๐‘€ of ๐‘… is called an ๐‘š -system if for each pair of elements ๐‘Ž , ๐‘ โˆˆ ๐‘€ , there is an element ๐‘ฅ โˆˆ ๐‘… such that ๐‘Ž ๐‘ฅ ๐‘ โˆˆ ๐‘€ . So a proper ideal ๐‘ƒ of ๐‘… is prime if and only if ๐‘… โงต ๐‘ƒ is an ๐‘š -system.

In Section 2, we give two definitions of zero-divisors graphs with respect to an ideal in a noncommutative ring, and we study the most basic results on the structure of these graphs. In Section 3, we discuss these graphs with respect to primal ideals.

2. Basic Results

In this section, we define several graphs with respect to an ideal in a noncommutative ring.

Definition 2.1. Let ๐ผ be an ideal of ๐‘… . We define a graph ฮ“ ๐‘™ ๐ผ ( ๐‘… ) with vertices ๐‘‡ ๐‘™ ( ๐ผ ) = { ๐‘ฅ โˆˆ ๐‘… โงต ๐ผ โˆถ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ f o r s o m e ๐‘ฆ โˆˆ ๐‘… โงต ๐ผ } , and where ๐‘ฅ โ†’ ๐‘ฆ is a directed edge between distinct vertices ๐‘ฅ and ๐‘ฆ if and only if ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ . The set ๐‘‡ ๐‘Ÿ ( ๐ผ ) and the graph ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… ) are defined in a similar way.

Definition 2.2. Let ๐ผ be an ideal of ๐‘… . We define a directed graph ฮ“ ๐ผ ( ๐‘… ) with vertices ๐‘‡ ( ๐ผ ) = { ๐‘ฅ โˆˆ ๐‘… โงต ๐ผ โˆถ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ o r ๐‘ฆ ๐‘… ๐‘ฅ โŠ† ๐ผ f o r s o m e ๐‘ฆ โˆˆ ๐‘… โงต ๐ผ } , and where ๐‘ฅ โ†’ ๐‘ฆ is a directed edge between distinct vertices ๐‘ฅ and ๐‘ฆ if and only if ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ .

Remark 2.3. (1) Suppose we have two graphs ๐บ 1 and ๐บ 2 and suppose that ๐บ 1 has vertex set ๐‘‰ 1 and edge set ๐ธ 1 ; and that ๐บ 2 has vertex set ๐‘‰ 2 and edge set ๐ธ 2 . The union of the two graphs, written ๐บ 1 โˆช ๐บ 2 , will have vertex set ๐‘‰ 1 โˆช ๐‘‰ 2 and edge set ๐ธ 1 โˆช ๐ธ 2 . Now assume that ๐ผ is an ideal of the ring ๐‘… . It is easy to see that ๐‘‡ ( ๐ผ ) = ๐‘‡ ๐‘™ ( ๐ผ ) โˆช ๐‘‡ ๐‘Ÿ ( ๐ผ ) and ๐ธ ( ฮ“ ๐ผ ( ๐‘… ) ) = ๐ธ ( ฮ“ ๐‘™ ๐ผ ( ๐‘… ) ) โˆช ๐ธ ( ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… ) ) . Therefore, ฮ“ ๐ผ ( ๐‘… ) = ฮ“ ๐‘™ ๐ผ ( ๐‘… ) โˆช ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… )
(2) We note that if we consider ๐ผ = 0 , and ๐‘… has a two-sided identity, then ฮ“ 0 ( ๐‘… ) = ฮ“ ( ๐‘… ) .

We say that a directed graph ๐บ is strongly connected if there is a path following the directed edges of ๐บ from any vertex of ๐บ to any other vertex of ๐บ . For two distinct vertices ๐‘Ž and ๐‘ in a graph ๐บ , the distance between ๐‘Ž and ๐‘ , denoted ๐‘‘ ( ๐‘Ž , ๐‘ ) , is the length of the shortest path from ๐‘Ž to ๐‘ if such a path exists; otherwise, ๐‘‘ ( ๐‘Ž , ๐‘ ) = โˆž . The diameter of a strongly connected graph is the supremum of the distances between vertices. Redmond proved that if ๐ผ is an ideal of a commutative ring ๐‘… , then the graph ฮ“ ๐ผ ( ๐‘… ) is always connected and its diameter, d i a m ( ฮ“ ๐ผ ( ๐‘… ) ) , is always less than or equal to 3 [5, Theorem 2.4]. The graph ฮ“ ๐ผ ( ๐‘… ) is not in general strongly connected. For example, if we consider the case where ๎€ท ๐‘… = { ๐‘ฅ ๐‘ฆ 0 0 ๎€ธ โˆฃ ๐‘ฅ , ๐‘ฆ โˆˆ โ„ค 2 } , and ๐ผ = 0 , then ฮ“ ๐ผ ( ๐‘… ) is not strongly connected as a directed graph (see Figure 1). But we have the following theorem.

Theorem 2.4. Let ๐ผ be an ideal of ๐‘… . If ๐‘‡ ๐‘™ ( ๐ผ ) = ๐‘‡ ๐‘Ÿ ( ๐ผ ) , then ฮ“ ๐ผ ( ๐‘… ) is strongly connected with d i a m ( ฮ“ ๐ผ ( ๐‘… ) ) โ‰ค 3 .

Proof. Let ๐‘ฅ and ๐‘ฆ be two distinct vertices of ฮ“ ๐ผ ( ๐‘… ) . Consider the following cases.(1)If ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ , then ๐‘ฅ โ†’ ๐‘ฆ is a path in ฮ“ ๐ผ ( ๐‘… ) .(2)If ฬธ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ , ๐‘ฅ ๐‘… ๐‘ฅ โŠ† ๐ผ and ๐‘ฆ ๐‘… ๐‘ฆ โŠ† ๐ผ , then, there exists ๐‘Ÿ โˆˆ ๐‘… with ๐‘ฅ ๐‘Ÿ ๐‘ฆ โˆˆ ๐‘… โงต ๐ผ . In this case, ๐‘ฅ โ†’ ๐‘ฅ ๐‘Ÿ ๐‘ฆ โ†’ ๐‘ฆ is a path.(3)If ฬธ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ , ๐‘ฅ ๐‘… ๐‘ฅ โŠ† ๐ผ and ฬธ ๐‘ฆ ๐‘… ๐‘ฆ โŠ† ๐ผ , then, there exists ๐‘ โˆˆ ๐‘… โงต ( ๐ผ โˆช { ๐‘ฅ , ๐‘ฆ } ) with ๐‘ ๐‘… ๐‘ฆ โŠ† ๐ผ . If ๐‘ฅ ๐‘… ๐‘ โŠ† ๐ผ , then ๐‘ฅ โ†’ ๐‘ โ†’ ๐‘ฆ is a path. If ฬธ ๐‘ฅ ๐‘… ๐‘ โŠ† ๐ผ , there exists ๐‘Ÿ โˆˆ ๐‘… with ๐‘ฅ ๐‘Ÿ ๐‘ โˆ‰ ๐ผ . In this case, ๐‘ฅ โ†’ ๐‘ฅ ๐‘Ÿ ๐‘ โ†’ ๐‘ฆ is a path.(4)If ฬธ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ , ฬธ ๐‘ฅ ๐‘… ๐‘ฅ โŠ† ๐ผ and ๐‘ฆ ๐‘… ๐‘ฆ โŠ† ๐ผ , then, there exists ๐‘Ž โˆˆ ๐‘… โงต ( ๐ผ โˆช { ๐‘ฅ , ๐‘ฆ } ) such that ๐‘ฅ ๐‘… ๐‘Ž โŠ† ๐ผ . If ๐‘Ž ๐‘… ๐‘ฆ โŠ† ๐ผ , then ๐‘ฅ โ†’ ๐‘Ž โ†’ ๐‘ฆ is a path. If ฬธ ๐‘Ž ๐‘… ๐‘ฆ โŠ† ๐ผ , there exists ๐‘Ÿ โˆˆ ๐‘… with ๐‘Ž ๐‘Ÿ ๐‘ฆ โˆ‰ ๐ผ . In this case, ๐‘ฅ โ†’ ๐‘Ž ๐‘Ÿ ๐‘ฆ โ†’ ๐‘ฆ ia a path.(5)If ฬธ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ , ฬธ ๐‘ฅ ๐‘… ๐‘ฅ โŠ† ๐ผ , and ฬธ ๐‘ฆ ๐‘… ๐‘ฆ โŠ† ๐ผ , then, there exist ๐‘Ž , ๐‘ โˆˆ ๐‘… โงต ( ๐ผ โˆช { ๐‘ฅ , ๐‘ฆ } ) with ๐‘ฅ ๐‘… ๐‘Ž โŠ† ๐ผ and ๐‘ ๐‘… ๐‘ฆ โŠ† ๐ผ . If ๐‘Ž = ๐‘ , then ๐‘ฅ โ†’ ๐‘Ž โ†’ ๐‘ฆ is a path. If ๐‘Ž โ‰  ๐‘ and ๐‘Ž ๐‘… ๐‘ โŠ† ๐ผ , then ๐‘ฅ โ†’ ๐‘Ž โ†’ ๐‘ โ†’ ๐‘ฆ is a path. If ๐‘Ž โ‰  ๐‘ and ฬธ ๐‘Ž ๐‘… ๐‘ โŠ† ๐ผ , there is ๐‘Ÿ โˆˆ ๐‘… with ๐‘Ž ๐‘Ÿ ๐‘ โˆ‰ ๐ผ ; in this case, ๐‘ฅ โ†’ ๐‘Ž ๐‘Ÿ ๐‘ โ†’ ๐‘ฆ is a path.

We now define an undirected graph as follows.

Definition 2.5. Let ๐ผ be an ideal of ๐‘… . We define an undirected graph ฮ“ ๐ผ ( ๐‘… ) with vertices ๐‘‡ ( ๐ผ ) = { ๐‘ฅ โˆˆ ๐‘… โงต ๐ผ โˆถ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ o r ๐‘ฆ ๐‘… ๐‘ฅ โŠ† ๐ผ f o r s o m e ๐‘ฆ โˆˆ ๐‘… โงต ๐ผ } , where distinct vertices ๐‘ฅ and ๐‘ฆ are adjacent if and only if either ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ or ๐‘ฆ ๐‘… ๐‘ฅ โŠ† ๐ผ .

Remark 2.6. Note that the graphs ฮ“ ๐ผ ( ๐‘… ) and ฮ“ ๐ผ ( ๐‘… ) share the same vertices and the same edges if the directions on the edges are ignored. Hence, the only difference between ฮ“ ๐ผ ( ๐‘… ) and ฮ“ ๐ผ ( ๐‘… ) is that the former one is a directed graph while the latter one is undirected. If ๐‘… is a commutative ring, then this definition agrees with the ideal-based zero-divisor graph in the sense of Redmond.

Theorem 2.7. Let ๐ผ be an ideal of ๐‘… . Then ฮ“ ๐ผ ( ๐‘… ) is connected with d i a m ( ฮ“ ๐ผ ( ๐‘… ) ) โ‰ค 3 .

Proof. Let ๐‘ฅ , ๐‘ฆ โˆˆ ฮ“ ๐ผ ( ๐‘… ) with ๐‘ฅ โ‰  ๐‘ฆ . If ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ or ๐‘ฆ ๐‘… ๐‘ฅ โŠ† ๐ผ , then ๐‘ฅ โˆ’ ๐‘ฆ is a path and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) = 1 . So assume that ฬธ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ and ฬธ ๐‘ฆ ๐‘… ๐‘ฅ โŠ† ๐ผ . Consider the following cases.
Case 1. ๐‘ฅ ๐‘… ๐‘ฅ โŠ† ๐ผ and ๐‘ฆ ๐‘… ๐‘ฆ โŠ† ๐ผ . As ฬธ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ , there exists ๐‘Ÿ โˆˆ ๐‘… with ๐‘ฅ ๐‘Ÿ ๐‘ฆ โˆˆ ๐‘… โงต ๐ผ . In this case ๐‘ฅ โˆ’ ๐‘ฅ ๐‘Ÿ ๐‘ฆ โˆ’ ๐‘ฆ is a path and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 2 .
Case 2. ๐‘ฅ ๐‘… ๐‘ฅ โŠ† ๐ผ and ฬธ ๐‘ฆ ๐‘… ๐‘ฆ โŠ† ๐ผ . There exists ๐‘ โˆˆ ๐‘… โงต ( ๐ผ โˆช { ๐‘ฅ , ๐‘ฆ } ) such that either ๐‘ ๐‘… ๐‘ฆ โŠ† ๐ผ or ๐‘ฆ ๐‘… ๐‘ โŠ† ๐ผ . If either ๐‘ ๐‘… ๐‘ฅ โŠ† ๐ผ or ๐‘ฅ ๐‘… ๐‘ โŠ† ๐ผ , then ๐‘ฅ โˆ’ ๐‘ โˆ’ ๐‘ฆ is a path and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 2 . Suppose that ฬธ ๐‘ ๐‘… ๐‘ฅ โŠ† ๐ผ and ฬธ ๐‘ฅ ๐‘… ๐‘ โŠ† ๐ผ . If ๐‘ฆ ๐‘… ๐‘ โŠ† ๐ผ , then ๐‘ฅ โˆ’ ๐‘ ๐‘Ÿ 1 ๐‘ฅ โˆ’ ๐‘ฆ is a path for some ๐‘Ÿ 1 โˆˆ ๐‘… for which ๐‘ ๐‘Ÿ 1 ๐‘ฅ โˆˆ ๐‘… โงต ๐ผ . If ๐‘ฆ ๐‘… ๐‘ โŠ† ๐ผ , then ๐‘ฅ โˆ’ ๐‘ฅ ๐‘Ÿ 2 ๐‘ โˆ’ ๐‘ฆ is a path for some ๐‘Ÿ 2 โˆˆ ๐‘… for which ๐‘ฅ ๐‘Ÿ 2 ๐‘ โˆˆ ๐‘… โงต ๐ผ . So in this case ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 2 .
Case 3. If ฬธ ๐‘ฅ ๐‘… ๐‘ฅ โŠ† ๐ผ and ๐‘ฆ ๐‘… ๐‘ฆ โŠ† ๐ผ , a similar argument as in Case 2 shows that there exists a path of length at most 2 between ๐‘ฅ and ๐‘ฆ . SO ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 2 .
Case 4. ฬธ ๐‘ฅ ๐‘… ๐‘ฅ โŠ† ๐ผ and ฬธ ๐‘ฆ ๐‘… ๐‘ฆ โŠ† ๐ผ . Then, there exist ๐‘Ž , ๐‘ โˆˆ ๐‘… โงต ( ๐ผ โˆช { ๐‘ฅ , ๐‘ฆ } ) such that either ๐‘Ž ๐‘… ๐‘ฅ โŠ† ๐ผ or ๐‘ฅ ๐‘… ๐‘Ž โŠ† ๐ผ and such that either ๐‘ ๐‘… ๐‘ฆ โŠ† ๐ผ or ๐‘ฆ ๐‘… ๐‘ โŠ† ๐ผ . If ๐‘Ž = ๐‘ , then ๐‘ฅ โˆ’ ๐‘Ž โˆ’ ๐‘ฆ is a path and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 2 . If ๐‘Ž โ‰  ๐‘ and either ๐‘Ž ๐‘… ๐‘ โŠ† ๐ผ or ๐‘ ๐‘… ๐‘Ž โŠ† ๐ผ , then ๐‘ฅ โˆ’ ๐‘Ž โˆ’ ๐‘ โˆ’ ๐‘ฆ is a path and ๐‘  ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 3 . So assume that ๐‘Ž โ‰  ๐‘ , ฬธ ๐‘Ž ๐‘… ๐‘ โŠ† ๐ผ , and ฬธ ๐‘ ๐‘… ๐‘Ž โŠ† ๐ผ . Then we have the following subcases.
Subcase 1. If ๐‘Ž ๐‘… ๐‘ฆ โŠ† ๐ผ or ๐‘ฆ ๐‘… ๐‘Ž โŠ† ๐ผ , then ๐‘ฅ โˆ’ ๐‘Ž โˆ’ ๐‘ฆ is a path and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 2 .
Subcase 2. ๐‘ฅ ๐‘… ๐‘Ž โŠ† ๐ผ and ๐‘ ๐‘… ๐‘ฆ โŠ† ๐ผ . As ฬธ ๐‘Ž ๐‘… ๐‘ โŠ† ๐ผ , there exists ๐‘Ÿ โˆˆ ๐‘… with ๐‘Ž ๐‘Ÿ ๐‘ โˆˆ ๐‘… โงต ๐ผ . In this case, ๐‘Ž โˆ’ ๐‘Ž ๐‘Ÿ ๐‘ โˆ’ ๐‘ฆ is a path and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 2 .
Subcase 3. ๐‘Ž ๐‘… ๐‘ฅ โŠ† ๐ผ and ๐‘ฆ ๐‘… ๐‘ โŠ† ๐ผ . As ฬธ ๐‘ ๐‘… ๐‘Ž โŠ† ๐ผ , there exists ๐‘Ÿ โˆˆ ๐‘… with ๐‘ ๐‘Ÿ ๐‘Ž โˆˆ ๐‘… โงต ๐ผ . Then ๐‘ฅ โˆ’ ๐‘ ๐‘Ÿ ๐‘Ž โˆ’ ๐‘ฆ is a path and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 2 .
Subcase 4. If ๐‘ฅ ๐‘… ๐‘Ž โŠ† ๐ผ , ๐‘ฆ ๐‘… ๐‘ ๐ผ and ฬธ ๐‘Ž ๐‘… ๐‘ฆ โŠ† ๐ผ , there exists ๐‘Ÿ โˆˆ ๐‘… such that ๐‘Ž ๐‘Ÿ ๐‘ฆ โˆˆ ๐‘… โงต ๐ผ . In this case, ๐‘ฅ โˆ’ ๐‘Ž ๐‘Ÿ ๐‘ฆ โˆ’ ๐‘ โˆ’ ๐‘ฆ is a path and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 3 .
Subcase 5. If ๐‘Ž ๐‘… ๐‘ฅ โŠ† ๐ผ , ๐‘ ๐‘… ๐‘ฆ โŠ† ๐ผ and ฬธ ๐‘ฆ ๐‘… ๐‘Ž โŠ† ๐ผ , there exists ๐‘Ÿ โˆˆ ๐‘… with ๐‘ฆ ๐‘Ÿ ๐‘Ž โˆˆ ๐‘… โงต ๐ผ . Then ๐‘ฅ โˆ’ ๐‘ฆ ๐‘Ÿ ๐‘Ž โˆ’ ๐‘ โˆ’ ๐‘ฆ is a path and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 3 .
We have already shown that in any case, there exists a path between ๐‘ฅ and ๐‘ฆ and ๐‘‘ ( ๐‘ฅ , ๐‘ฆ ) โ‰ค 3 . Thus d i a m ( ฮ“ ๐ผ ( ๐‘… ) ) โ‰ค 3 .

As we mentioned in Figure 1, if ๐‘… is a noncommutative ring, the graph ฮ“ ๐ผ ( ๐‘… ) need not be strongly connected as a directed graph, while as it is proved in Theorem 2.7, ฮ“ ๐ผ ( ๐‘… ) is always connected.

The girth of a graph ๐บ is the length of a shortest cycle (or equivalently the number of vertices of a least sided polygon) contained in the graph. If ๐บ does not contain a cycle, then its girth is defined to be infinity. Obviously, the girth of a graph is at least 3. For an ideal ๐ผ of a commutative ring ๐‘… , the girth of ฮ“ ๐ผ ( ๐‘… ) is known to be either infinite or 3 or 4 (See [5, Lemma 5.1]). In the following theorem, we give a similar result for ฮ“ ๐ผ ( ๐‘… ) .

Theorem 2.8. Let ๐ผ be an ideal of ๐‘… . If ฮ“ ๐ผ ( ๐‘… ) contains a cycle, then ๐‘” ๐‘Ÿ ( ฮ“ ๐ผ ( ๐‘… ) ) โ‰ค 4 .

Proof. Suppose that ฮ“ ๐ผ ( ๐‘… ) contains a cycle ๐‘ฅ 0 โˆ’ ๐‘ฅ 1 โˆ’ ๐‘ฅ 2 โˆ’ โ‹ฏ โˆ’ ๐‘ฅ ๐‘› โˆ’ 1 โˆ’ ๐‘ฅ ๐‘› โˆ’ ๐‘ฅ 0 of shortest length with ๐‘› โ‰ฅ 4 and look for a contradiction. Consider the following cases.
Case 1. There exists 1 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 1 such that ๐‘ฅ ๐‘— โˆˆ ๐ด โˆถ = ๐ผ ๐‘ฅ โˆ’ 1 ๐‘— โˆ’ 1 โˆฉ ๐ผ ๐‘ฅ โˆ’ 1 ๐‘— + 1 . Without loss of generality, we may assume that ๐‘— = 1 . If there exists ๐‘ฆ โˆˆ ๐ด โงต ๐ผ with ๐‘ฆ โ‰  ๐‘ฅ 1 , then ๐‘ฅ 0 โˆ’ ๐‘ฅ 1 โˆ’ ๐‘ฅ 2 โˆ’ ๐‘ฆ โˆ’ ๐‘ฅ 0 is a cycle in ฮ“ ๐ผ ( ๐‘… ) which is a contradiction. So assume that ๐ด = ๐ผ โˆช { ๐‘ฅ 1 } . Since ๐‘ฅ 3 โˆ’ ๐‘ฅ 4 is a path, either ๐‘ฅ 3 ๐‘… ๐‘ฅ 4 โŠ† ๐ผ or ๐‘ฅ 4 ๐‘… ๐‘ฅ 3 โŠ† ๐ผ . Note that ๐‘ฅ 1 ๐‘… ๐‘ฅ 3 ฬธ โŠ† ๐ผ , ๐‘ฅ 3 ๐‘… ๐‘ฅ 1 ฬธ โŠ† ๐ผ , ๐‘ฅ 1 ๐‘… ๐‘ฅ 4 ฬธ โŠ† ๐ผ , and ๐‘ฅ 4 ๐‘… ๐‘ฅ 1 ฬธ โŠ† ๐ผ . As ๐ด is an ideal of ๐‘… and ๐‘ฅ 1 โˆˆ ๐ด , we have ๐‘ฅ 3 ๐‘… ๐‘ฅ 1 โŠ† ๐ด = ๐ผ โˆช { ๐‘ฅ 1 } . There exists ๐‘Ÿ โˆˆ ๐‘… with ๐‘ฅ 3 ๐‘Ÿ ๐‘ฅ 1 โˆˆ ๐‘… โงต ๐ผ . But ๐‘ฅ 3 ๐‘Ÿ ๐‘ฅ 1 โˆˆ ๐ด implies that ๐‘ฅ 3 ๐‘Ÿ ๐‘ฅ 1 = ๐‘ฅ 1 . Similarly, one can shows that ๐‘ฅ 4 ๐‘Ÿ ๎…ž ๐‘ฅ 1 = ๐‘ฅ 1 for some ๐‘Ÿ ๎…ž โˆˆ ๐‘… . In this case, we have ๐‘ฅ 3 ๐‘… ๐‘ฅ 1 = ๐‘ฅ 3 ๐‘… ๐‘ฅ 4 ๐‘Ÿ ๎…ž ๐‘ฅ 1 โŠ† ๐ผ which is a contradiction.
Case 2. There exists 1 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 1 with ๐‘ฅ ๐‘— โˆˆ ๐‘ฅ โˆ’ 1 ๐‘— โˆ’ 1 ๐ผ โˆฉ ๐‘ฅ โˆ’ 1 ๐‘— + 1 ๐ผ . A similar argument as in Case 1 leads us a contradiction.
Case 3. For each 1 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 1 , ๐‘ฅ ๐‘— โˆ‰ ๐ผ ๐‘ฅ โˆ’ 1 ๐‘— โˆ’ 1 โˆฉ ๐ผ ๐‘ฅ โˆ’ 1 ๐‘— + 1 , and ๐‘ฅ ๐‘— โˆˆ ๐‘ฅ โˆ’ 1 ๐‘— โˆ’ 1 ๐ผ โˆฉ ๐‘ฅ โˆ’ 1 ๐‘— + 1 ๐ผ . Therefore, without loss of generality, we can assume that we have a cycle in ฮ“ ๐ผ ( ๐‘… ) of the form ๐‘ฅ 0 โ†’ ๐‘ฅ 1 โ†’ ๐‘ฅ 2 โ†’ โ‹ฏ โ†’ ๐‘ฅ ๐‘› โˆ’ 1 โ†’ ๐‘ฅ ๐‘› โ†’ ๐‘ฅ 0 with all edges having only one direction. Now consider the following subcases.
Subcase 1. ๐‘ฅ 0 ๐‘… ๐‘ฅ 0 โŠ† ๐ผ and ๐‘ฅ ๐‘› ๐‘… ๐‘ฅ ๐‘› โŠ† ๐ผ . Since there is no directed path of the form ๐‘ฅ 0 โ†’ ๐‘ฅ ๐‘› , there exists ๐‘Ÿ โˆˆ ๐‘… with ๐‘ฅ 0 ๐‘Ÿ ๐‘ฅ ๐‘› โˆˆ ๐‘… โงต ๐ผ . In this case, ๐‘ฅ 0 โ†’ ๐‘ฅ 0 ๐‘Ÿ ๐‘ฅ ๐‘› โ†’ ๐‘ฅ ๐‘› โ†’ ๐‘ฅ 0 is a 3-cycle in ฮ“ ๐ผ ( ๐‘… ) which is a contradiction.
Subcase 2. ๐‘ฅ 0 ๐‘… ๐‘ฅ 0 โŠ† ๐ผ and ๐‘ฅ ๐‘› ๐‘… ๐‘ฅ ๐‘› ฬธ โŠ† ๐ผ . Since ๐‘› โ‰ฅ 4 , ๐‘ฅ 0 ๐‘… ๐‘ฅ ๐‘› โˆ’ 1 ฬธ โŠ† ๐ผ . So there is ๐‘Ÿ โˆˆ ๐‘… with ๐‘ฅ 0 ๐‘Ÿ ๐‘ฅ ๐‘› โˆ’ 1 โˆˆ ๐‘… โงต ๐ผ . In this case, ๐‘ฅ 0 โ†’ ๐‘ฅ 0 ๐‘Ÿ ๐‘ฅ ๐‘› โˆ’ 1 โ†’ ๐‘ฅ ๐‘› โ†’ ๐‘ฅ 0 is a 3-cycle in ฮ“ ๐ผ ( ๐‘… ) which is a contradiction.
Subcase 3. ๐‘ฅ 0 ๐‘… ๐‘ฅ 0 ฬธ โŠ† ๐ผ and ๐‘ฅ ๐‘› ๐‘… ๐‘ฅ ๐‘› โŠ† ๐ผ . Since ๐‘› โ‰ฅ 4 , ๐‘ฅ 1 ๐‘… ๐‘ฅ ๐‘› ฬธ โŠ† ๐ผ . So there is ๐‘Ÿ โˆˆ ๐‘… with ๐‘ฅ 1 ๐‘Ÿ ๐‘ฅ ๐‘› โˆˆ ๐‘… โงต ๐ผ . In this case, ๐‘ฅ 0 โ†’ ๐‘ฅ 1 ๐‘Ÿ ๐‘ฅ ๐‘› โ†’ ๐‘ฅ ๐‘› โ†’ ๐‘ฅ 0 is a 3-cycle in ฮ“ ๐ผ ( ๐‘… ) which is a contradiction.
Subcase 4. ๐‘ฅ 0 ๐‘… ๐‘ฅ 0 ฬธ โŠ† ๐ผ and ๐‘ฅ ๐‘› ๐‘… ๐‘ฅ ๐‘› ฬธ โŠ† ๐ผ . Since ๐‘› โ‰ฅ 4 , ๐‘ฅ 1 ๐‘… ๐‘ฅ ๐‘› โˆ’ 1 ฬธ โŠ† ๐ผ . So there is ๐‘Ÿ โˆˆ ๐‘… with ๐‘ฅ 1 ๐‘Ÿ ๐‘ฅ ๐‘› โˆ’ 1 โˆˆ ๐‘… โงต ๐ผ . In this case, ๐‘ฅ 0 โ†’ ๐‘ฅ 1 ๐‘Ÿ ๐‘ฅ ๐‘› โˆ’ 1 โ†’ ๐‘ฅ ๐‘› โ†’ ๐‘ฅ 0 is a 3-cycle in ฮ“ ๐ผ ( ๐‘… ) which is a contradiction.
Since in each of these cases we have found a contradiction, we must have ๐‘” ๐‘Ÿ ( ฮ“ ๐ผ ( ๐‘… ) ) โ‰ค 4 .

3. Primal Ideals

In this section, we will study the zero-divisor graphs with respect to primal ideals, right primal ideals, and left primal ideals. First we recall the definitions of these concepts.

Definition 3.1 (see [9]). Let ๐ผ be an ideal of ๐‘… , and let ๐‘ฅ be an element of ๐‘… . Set ๐ผ ๐‘ฅ โˆ’ 1 = { ๐‘ฆ โˆˆ ๐‘… โˆถ ๐‘ฆ ๐‘… ๐‘ฅ โŠ† ๐ผ } and ๐‘ฅ โˆ’ 1 ๐ผ = { ๐‘ฆ โˆˆ ๐‘… โˆถ ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ } . Evidently both ๐ผ ๐‘ฅ โˆ’ 1 and ๐‘ฅ โˆ’ 1 ๐ผ are ideals of ๐‘… containing ๐ผ .

Definition 3.2 (see [9]). The element ๐‘ฅ โˆˆ ๐‘… is not right prime (nrp) (resp., not left prime (nlp)) to ๐ผ if ๐ผ ๐‘ฅ โˆ’ 1 โ‰  ๐ผ (resp., ๐‘ฅ โˆ’ 1 ๐ผ โ‰  ๐ผ ). Otherwise, ๐‘ฅ is right prime (rp) (resp., left prime (lp)) to ๐ผ . Denote by ๐‘† ๐‘Ÿ ( ๐ผ ) (resp., ๐‘† ๐‘™ ( ๐ผ ) ) the set of elements of ๐‘… that are nrp (resp., nlp) to ๐ผ . The ideal ๐ผ of ๐‘… is called a right primal (resp., left primal) ideal of ๐‘… if ๐‘† ๐‘Ÿ ( ๐ผ ) (resp., ๐‘† ๐‘™ ( ๐ผ ) ) form an ideal of ๐‘… , which is then termed the right (resp., left) adjoint ideal of ๐ผ .

Definition 3.3. Let ๐ผ be an ideal of ๐‘… . The element ๐‘ฅ โˆˆ ๐‘… is not prime (np) to ๐ผ if either ๐ผ ๐‘ฅ โˆ’ 1 โ‰  ๐ผ or ๐‘ฅ โˆ’ 1 ๐ผ โ‰  ๐ผ . Otherwise, ๐‘ฅ is prime to ๐ผ . Denote by ๐‘† ( ๐ผ ) the set of elements of ๐‘… that are np to ๐ผ . Clearly ๐‘† ( ๐ผ ) = ๐‘† ๐‘™ ( ๐ผ ) โˆช ๐‘† ๐‘Ÿ ( ๐ผ ) . ๐ผ is called a primal ideal of ๐‘… if ๐‘† ( ๐ผ ) form an ideal of ๐‘… , which is then termed the adjoint ideal of ๐‘… .

Example 3.4 (see [11]). Take ๐‘… = โ„ค 2 โŸจ ๐‘ฅ , ๐‘ฆ โŸฉ , the noncommutative polynomial ring over โ„ค 2 = { 0 , 1 } , subject to ๐‘ฅ ๐‘ฆ = 0 , ๐‘ฅ ๐‘… ๐‘ฆ = 0 . It is easy to check that ๐‘ฆ is nrp to the ideal ( 0 ) , and ๐‘† ๐‘Ÿ ( 0 ) = ๐‘… ๐‘ฆ ๐‘… . Moreover, for every ๐‘ง โˆˆ ๐‘… , ๐‘ฆ ๐‘… ๐‘ง = 0 if and only if ๐‘ง = 0 . Hence ๐‘ฆ is nlp to ( 0 ) . But as ๐‘ฅ ๐‘… ๐‘ฆ = 0 with ๐‘ฆ โˆ‰ ( 0 ) , ๐‘ฅ is nlp to ( 0 ) . Therefore, ๐‘† ๐‘™ ( 0 ) = ๐‘… ๐‘ฅ ๐‘… . These show that ( 0 ) is both left and right primal ideal, but not a primal ideal.

Remark 3.5. (1) Note that if ๐‘… is commutative, then ๐‘ฅ being nrp to ๐ผ is equivalent to ๐‘ฅ being nlp and both are equivalent to ๐‘ฅ being not prime to ๐ผ , and thus the definitions of Barnes [9] and Fuchs [8] are identical.
(2) If ๐‘… satisfies the ascending chain condition for ideals and if ๐ผ is a right primal (resp. left primal) ideal of ๐‘… , then, by [9, Corollary 2], the set ๐‘ƒ โˆถ = ๐‘† ๐‘Ÿ ( ๐ผ ) (resp. ๐‘ƒ โˆถ = ๐‘† ๐‘™ ( ๐ผ ) ) is a prime ideal of ๐‘… . In this case, we also say that ๐ผ is a right (resp. left) ๐‘ƒ -primal ideal of ๐‘… .

Lemma 3.6. Let ๐ผ be a proper ideal of ๐‘… . Then we have the following. (1)All ๐‘† ๐‘Ÿ ( ๐ผ ) , ๐‘† ๐‘™ ( ๐ผ ) , and ๐‘† ( ๐ผ ) contain ๐ผ .(2) ฮ“ ๐‘™ ๐ผ ( ๐‘… ) = ๐‘† ๐‘™ ( ๐ผ ) โงต ๐ผ . In particular, ฮ“ ๐‘™ ๐ผ ( ๐‘… ) โˆช ๐ผ = ๐‘† ๐‘™ ( ๐ผ ) .(3) ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… ) = ๐‘† ๐‘Ÿ ( ๐ผ ) โงต ๐ผ . In particular, ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… ) โˆช ๐ผ = ๐‘† ๐‘Ÿ ( ๐ผ ) .(4) ฮ“ ๐ผ ( ๐‘… ) = ๐‘† ( ๐ผ ) โงต ๐ผ . In particular, ฮ“ ๐ผ ( ๐‘… ) โˆช ๐ผ = ๐‘† ( ๐ผ ) .

Proof. (1) Assume that ๐‘ฆ โˆˆ ๐‘… โงต ๐ผ . For every ๐‘ฅ โˆˆ ๐ผ , as ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ , we must have that ๐‘ฅ is nrp to ๐ผ , that is ๐‘ฅ โˆˆ ๐‘† ๐‘Ÿ ( ๐ผ ) . Hence ๐ผ โŠ† ๐‘† ๐‘Ÿ ( ๐ผ ) . Similarly, one can show that ๐ผ โŠ† ๐‘† ๐‘™ ( ๐ผ ) and ๐ผ โŠ† ๐‘† ( ๐ผ )
(2) Let ๐‘ฅ โˆˆ ฮ“ ๐‘™ ๐ผ ( ๐‘… ) . Then ๐‘ฅ โˆ‰ ๐ผ and ๐‘ฅ ๐‘… ๐‘ฆ โŠ† ๐ผ for some ๐‘ฆ โˆˆ ๐‘… โงต ๐ผ . So ๐‘ฅ is nlp to ๐ผ ; hence ๐‘ฅ โˆˆ ๐‘† ๐‘™ ( ๐ผ ) โงต ๐ผ . Thus ฮ“ ๐‘™ ๐ผ ( ๐‘… ) โŠ† ๐‘† ๐‘™ ( ๐ผ ) โˆ’ ๐ผ . For the other containment, assume that ๐‘Ž โˆˆ ๐‘† ๐‘™ ( ๐ผ ) โˆ’ ๐ผ . As ๐‘Ž is nlp to ๐ผ , there exists ๐‘ฆ โˆ‰ ๐ผ such that ๐‘Ž ๐‘… ๐‘ฆ โŠ† ๐ผ . Thus ๐‘Ž โˆˆ ฮ“ ๐‘™ ๐ผ ( ๐‘… ) , so ๐‘† ๐‘™ ( ๐ผ ) โˆ’ ๐ผ โŠ† ฮ“ ๐‘™ ๐ผ ( ๐‘… ) . Therefore, we have the equality.
(3) The proof of ( 3 ) is similar to that of ( 2 ) .
(4) By ( 2 ) and ( 3 ) , we have ฮ“ ๐ผ ( ๐‘… ) = ฮ“ ๐‘™ ๐ผ ( ๐‘… ) โˆช ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… ) = ( ๐‘† ๐‘™ ( ๐ผ ) โงต ๐ผ ) โˆช ( ๐‘† ๐‘Ÿ ( ๐ผ ) โงต ๐ผ ) = ( ๐‘† ๐‘™ ( ๐ผ ) โˆช ๐‘† ๐‘Ÿ ( ๐ผ ) ) โงต ๐ผ = ๐‘† ( ๐ผ ) โงต ๐ผ .

Theorem 3.7. Assume that ๐‘… satisfies the ascending chain condition for ideals, and let ๐ผ and ๐‘ƒ be ideals of ๐‘… with ๐‘ƒ prime. Then (1) ๐ผ is a prime ideal of ๐‘… if and only if ฮ“ ๐ผ ( ๐‘… ) = โˆ… ,(2) ๐ผ is a right ๐‘ƒ -primal ideal of ๐‘… if and only if ๐ผ โŠ† ๐‘ƒ and ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… ) = ๐‘ƒ โงต ๐ผ ;(3) ๐ผ is a left ๐‘ƒ -primal ideal of ๐‘… if and only if ๐ผ โŠ† ๐‘ƒ and ฮ“ ๐‘™ ๐ผ ( ๐‘… ) = ๐‘ƒ โงต ๐ผ ;(4) ๐ผ is a ๐‘ƒ -primal ideal of ๐‘… if and only if ๐ผ โŠ† ๐‘ƒ and ฮ“ ๐ผ ( ๐‘… ) = ๐‘ƒ โงต ๐ผ ;

Proof. (1) Is clear.
(2) If ๐ผ is right ๐‘ƒ -primal, then ๐‘ƒ = ๐‘† ๐‘Ÿ ( ๐ผ ) . Hence ๐ผ โŠ† ๐‘† ๐‘Ÿ ( ๐ผ ) = ๐‘ƒ and ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… ) = ๐‘ƒ โงต ๐ผ by Lemma 3.6. Conversely, if ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… ) = ๐‘ƒ โงต ๐ผ , then ๐‘ƒ = ฮ“ ๐‘Ÿ ๐ผ ( ๐‘… ) โˆช ๐ผ = ๐‘† ๐‘Ÿ ( ๐ผ ) by Lemma 3.6. Thus ๐ผ is a right ๐‘ƒ -primal ideal of ๐‘… .
The proofs of parts ( 3 ) and ( 4 ) are similar.

Let ๐ผ be an ideal of ๐‘… . The prime radical of ๐ผ , denoted by R a d ( ๐ผ ) , is the set of all ๐‘Ž โˆˆ ๐‘… such that the intersection of ๐ผ with every ๐‘š -system of ๐‘… which contains ๐‘Ž is nonempty. An ideal ๐‘„ of ๐‘… is a primary ideal if ๐ด ๐ต โŠ† ๐‘„ and ๐ต ฬธ โŠ† ๐‘„ , where ๐ด and ๐ต are ideals of ๐‘… , implies that ๐ด โŠ† R a d ( ๐‘„ ) . It was shown that an ideal ๐‘„ of ๐‘… is a primary ideal if and only if ๐‘Ž ๐‘… ๐‘ โŠ† ๐‘„ and ๐‘ โˆ‰ ๐‘„ , where ๐‘Ž , ๐‘ โˆˆ ๐‘… implies that ๐‘Ž โˆˆ R a d ( ๐‘„ ) . The following theorem is another characterization via zero-divisor graphs.

Theorem 3.8. Let ๐‘„ be an ideal of ๐‘… . Then ๐‘„ is a primary ideal of ๐‘… if and only if ฮ“ ๐‘„ ( ๐‘… ) = R a d ( ๐‘„ ) โงต ๐‘„ .

Proof. If ๐‘„ is primary, then ๐‘„ is a primal ideal of ๐‘… with adjoint ideal R a d ( ๐‘„ ) . Thus ฮ“ ๐ผ ( ๐‘… ) = R a d ( ๐‘„ ) โงต ๐‘„ by Lemma 3.6. Conversely, assume that ฮ“ ๐ผ ( ๐‘… ) = R a d ( ๐‘„ ) โงต ๐‘„ and let ๐‘Ž ๐‘… ๐‘ โŠ† ๐‘„ for some ๐‘Ž , ๐‘ โˆˆ ๐‘… . Assume that ๐‘Ž , ๐‘ โˆˆ ๐‘… โงต ๐‘„ . Then ๐‘Ž โˆˆ ฮ“ ๐ผ ( ๐‘… ) = R a d ( ๐‘„ ) โงต ๐‘„ , that is, ๐‘„ is a primary ideal.

Acknowledgment

The authors thank the referee for valuable comments.