About this Journal Submit a Manuscript Table of Contents
ISRN Allergy
Volume 2011 (2011), Article ID 832560, 13 pages
http://dx.doi.org/10.5402/2011/832560
Review Article

Nitric Oxide in Asthma Physiopathology

1Department of Medicine, School of Medicine, University of São Paulo, 04023-900 São Paulo, SP, Brazil
2Departmento de Ciências Biológicas, Universidade Federal de São Paulo, 04301-012, Diadema, SP, Brazil

Received 28 January 2011; Accepted 10 March 2011

Academic Editors: E. Bar-Yishay, S. Mattoli, and S. Loukides

Copyright © 2011 Carla M. Prado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Norman and C. H. Keith, “Nitrogen oxides in tobacco smoke,” Nature, vol. 205, no. 4974, pp. 915–916, 1965. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Culotta and D. E. Koshland, “No news is good news,” Science, vol. 258, no. 5090, pp. 1862–1865, 1992. View at Scopus
  3. R. F. Furchgott and J. V. Zawadzki, “The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine,” Nature, vol. 288, no. 5789, pp. 373–376, 1980. View at Scopus
  4. R. M. J. Palmer, A. G. Ferrige, and S. Moncada, “Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor,” Nature, vol. 327, no. 6122, pp. 524–526, 1987. View at Scopus
  5. L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, and G. Chaudhuri, “Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 24, pp. 9265–9269, 1987. View at Scopus
  6. R. G. Knowles, M. Palacios, R. M. J. Palmer, and S. Moncada, “Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 13, pp. 5159–5162, 1989. View at Scopus
  7. D. S. Bredt and S. H. Snyder, “Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 22, pp. 9030–9033, 1989. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. Christopherson and D. S. Bredt, “Nitric oxide in excitable tissues: physiological roles and disease,” Journal of Clinical Investigation, vol. 100, no. 10, pp. 2424–2429, 1997. View at Scopus
  9. L. Kobzik, M. B. Reid, D. S. Bredt, and J. S. Stamler, “Nitric oxide in skeletal muscle,” Nature, vol. 372, no. 6506, pp. 546–548, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Moncada and A. Higgs, “The L-arginine-nitric oxide pathway,” The New England Journal of Medicine, vol. 329, no. 27, pp. 2002–2012, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. F. L. M. Ricciardolo, P. J. Sterk, B. Gaston, and G. Folkerts, “Nitric oxide in health and disease of the respiratory system,” Physiological Reviews, vol. 84, no. 3, pp. 731–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. L. M. Ricciardolo, “Multiple roles of nitric oxide in the airways,” Thorax, vol. 58, no. 2, pp. 175–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Moncada, R. M. J. Palmer, and E. A. Higgs, “Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication,” Biochemical Pharmacology, vol. 38, no. 11, pp. 1709–1715, 1989. View at Scopus
  14. M. A. Tayeh and M. A. Marletta, “Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor,” Journal of Biological Chemistry, vol. 264, no. 33, pp. 19654–19658, 1989. View at Scopus
  15. T. Michel and O. Feron, “Nitric oxide synthases: which, where, how, and why?” Journal of Clinical Investigation, vol. 100, no. 9, pp. 2146–2152, 1997. View at Scopus
  16. L. J. Ignarro, “Nitric oxide as a unique signaling molecule in the vascular system: a historical overview,” Journal of Physiology and Pharmacology, vol. 53, no. 4, pp. 503–514, 2002. View at Scopus
  17. L. G. Que, S. P. Kantrow, C. P. Jenkinson, C. A. Piantadosi, and Y. C. T. Huang, “Induction of arginase isoforms in the lung during hyperoxia,” American Journal of Physiology, vol. 275, no. 1, pp. L96–L102, 1998. View at Scopus
  18. H. Meurs, H. Maarsingh, and J. Zaagsma, “Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness,” Trends in Pharmacological Sciences, vol. 24, no. 9, pp. 450–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Maarsingh, A. B. Zuidhof, I. S. T. Bos et al., “Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 6, pp. 565–573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. S. Bredt, P. M. Hwang, and S. H. Snyder, “Localization of nitric oxide synthase indicating a neural role for nitric oxide,” Nature, vol. 347, no. 6295, pp. 768–770, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Xie, H. J. Cho, J. Calaycay et al., “Cloning and characterization of inducible nitric oxide synthase from mouse macrophages,” Science, vol. 256, no. 5054, pp. 225–228, 1992. View at Scopus
  22. Q. Hamid, D. R. Springall, V. Riveros-Moreno et al., “Induction of nitric oxide synthase in asthma,” Lancet, vol. 342, no. 8886-8887, pp. 1510–1513, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. Robbins, “Nitric oxide,” in Asthma, P. J. Barnes, M. M. Grunstein, and A. R. Leff, Eds., pp. 695–705, Lippincott-Raven, Philadelphia, Pa, USA, 1997.
  24. S. Lamas, P. A. Marsden, G. K. Li, P. Tempst, and T. Michel, “Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 14, pp. 6348–6352, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. T. J. Guzik, R. Korbut, and T. Adamek-Guzik, “Nitric oxide and superoxide in inflammation and immune regulation,” Journal of Physiology and Pharmacology, vol. 54, no. 4, pp. 469–487, 2003. View at Scopus
  26. N. J. Alp, S. Mussa, J. Khoo et al., “Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression,” Journal of Clinical Investigation, vol. 112, no. 5, pp. 725–735, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. G. T. De Sanctis, S. Mehta, L. Kobzik et al., “Contribution of type I NOS to expired gas NO and bronchial responsiveness in mice,” American Journal of Physiology, vol. 273, no. 4, pp. L883–L888, 1997. View at Scopus
  28. K. Kobayashi, Y. Nishimura, T. Yamashita, T. Nishiuma, M. Satouchi, and M. Yokoyama, “The effect of overexpression of endothelial nitric oxide synthase on eosinophilic lung inflammation in a murine model,” International Immunopharmacology, vol. 6, no. 7, pp. 1040–1052, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Vizzard, S. L. Erdman, and W. C. de Groat, “Increased expression of neuronal nitric oxide synthase in dorsal root ganglion neurons after systemic capsaicin administration,” Neuroscience, vol. 67, no. 1, pp. 1–5, 1995. View at Publisher · View at Google Scholar
  30. H. J. Patel, M. G. Belvisi, L. E. Donnelly, M. H. Yacoub, K. F. Chung, and J. A. Mitchell, “Constitutive expressions of type I NOS in human airway smooth muscle cells: evidence for an antiproliferative role,” FASEB Journal, vol. 13, no. 13, pp. 1810–1816, 1999. View at Scopus
  31. K. Asano, C. B. E. Chee, B. Gaston et al., “Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 10089–10093, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Bult, G. E. Boeckxstaens, P. A. Pelckmans, F. H. Jordaens, Y. M. Van Maercke, and A. G. Herman, “Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter,” Nature, vol. 345, no. 6273, pp. 346–347, 1990. View at Publisher · View at Google Scholar · View at Scopus
  33. C. G. Li and M. J. Rand, “Evidence that part of the NANC relaxant response of guinea-pig trachea to electrical field stimulation is mediated by nitric oxide,” British Journal of Pharmacology, vol. 102, no. 1, pp. 91–94, 1991. View at Scopus
  34. M. G. Belvisi, D. Stretton, and P. J. Barnes, “Nitric oxide as an endogenous modulator of cholinergic neurotransmission in guinea-pig airways,” European Journal of Pharmacology, vol. 198, no. 2-3, pp. 219–221, 1991. View at Scopus
  35. T. Imasaki, H. Kobayashi, R. Hataishi, I. Hayashi, T. Tomita, and M. Majima, “Nitric oxide is generated in smooth muscle layer by neurokinin A and counteracts constriction in Guinea pig airway,” Nitric Oxide, vol. 5, no. 5, pp. 465–474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. J. K. Ward, P. J. Barnes, D. R. Springall et al., “Distribution of human iNANC bronchodilator and nitric oxide-immunoreactive nerves,” American Journal of Respiratory Cell and Molecular Biology, vol. 13, no. 2, pp. 175–184, 1995. View at Scopus
  37. Q. H. Meng, J. M. Polak, A. J. Edgar et al., “Neutrophils enhance expression of inducible nitric oxide synthase in human normal but not cystic fibrosis bronchial epithelial cells,” Journal of Pathology, vol. 190, no. 2, pp. 126–132, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Birrell, K. McCluskie, E. B. Haddad et al., “Pharmacological assessment of the nitric-oxide synthase isoform involved in eosinophilic inflammation in a rat model of sephadex-induced airway inflammation,” Journal of Pharmacology and Experimental Therapeutics, vol. 304, no. 3, pp. 1285–1291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Offer, D. Shoseyov, H. Bibi, A. Eliraz, and Z. Madar, “A leukotriene receptor antagonist modulates iNOS in the lung and in a leukotriene-free cell model,” Nitric Oxide, vol. 9, no. 1, pp. 10–17, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Moncada, R. M. J. Palmer, and E. A. Higgs, “Nitric oxide: physiology, pathophysiology, and pharmacology,” Pharmacological Reviews, vol. 43, no. 2, pp. 109–142, 1991. View at Scopus
  41. F. H. Guo, H. R. De Raeve, T. W. Rice, D. J. Stuehr, F. B. J. M. Thunnissen, and S. C. Erzurum, “Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7809–7813, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Iyengar, D. J. Stuehr, and M. A. Marletta, “Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 18, pp. 6369–6373, 1987.
  43. M. Watanabe and F. Kakuta, “Expression and localization of the inducible isoform of nitric oxide synthase in polyps,” Nippon Jibiinkoka Gakkai Kaiho, vol. 105, no. 8, pp. 873–881, 2002.
  44. T. B. McCall, R. M. J. Palmer, and S. Moncada, “Induction of nitric oxide synthase in rat peritoneal neutrophils and its inhibition by dexamethasone,” European Journal of Immunology, vol. 21, no. 10, pp. 2523–2527, 1991. View at Scopus
  45. G. A. Cerchiaro, C. Scavone, S. Texeira, and P. Sannomiya, “Inducible nitric oxide synthase in rat neutrophils: Role of insulin,” Biochemical Pharmacology, vol. 62, no. 3, pp. 357–362, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. C. M. Prado, E. A. Leick-Maldonado, V. Arata, D. I. Kasahara, M. A. Martins, and I. F. L. C. Tibério, “Neurokinins and inflammatory cell iNOS expression in guinea pigs with chronic allergic airway inflammation,” American Journal of Physiology, vol. 288, no. 4, pp. L741–L748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. C. M. Prado, E. A. Leick-Maldonado, D. I. Kasahara, V. L. Capelozzi, M. A. Martins, and I. F. L. C. Tibério, “Effects of acute and chronic nitric oxide inhibition in an experimental model of chronic pulmonary allergic inflammation in guinea pigs,” American Journal of Physiology, vol. 289, no. 4, pp. L677–L683, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. C. M. Prado, E. A. Leick-Maldonado, L. Yano et al., “Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 4, pp. 457–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. D. D. Rees, R. M. J. Palmer, and S. Moncada, “Role of endothelium-derived nitric oxide in the regulation of blood pressure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 9, pp. 3375–3378, 1989. View at Scopus
  50. R. C. Baddedge, P. K. Moore, Z. Gathen, and S. L. Hart, “L-NG-nitroarginine p-nitroanilide (L-NAPNA): a selective inhibitor of nitric oxide synthase in the brain,” British Journal of Pharmacology, vol. 107, 194 pages, 1993.
  51. E. P. Garvey, J. A. Oplinger, E. S. Furfine, et al., “1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo,” Journal of Biological Chemistry, vol. 272, no. 8, pp. 4959–4963, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Meurs, S. McKay, H. Maarsingh et al., “Increased arginase activity underlies allergen-induced deficiency of cNos-derived nitric oxide and airway hyperresponsiveness,” British Journal of Pharmacology, vol. 136, no. 3, pp. 391–398, 2002. View at Scopus
  53. J. R. Van Camp, C. Yian, and F. M. Lupinetti, “Regulation of pulmonary vascular resistance by endogenous and exogenous nitric oxide,” Annals of Thoracic Surgery, vol. 58, no. 4, pp. 1025–1030, 1994. View at Scopus
  54. L. S. Feder, D. Stelts, R. W. Chapman et al., “Role of nitric oxide on eosinophilic lung inflammation in allergic mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 4, pp. 436–442, 1997. View at Scopus
  55. M. Schuiling, H. Meurs, A. B. Zuidhof, N. Venema, and J. Zaagsma, “Dual action of iNOS derived nitric oxide in allergen-induced airway hyperreactivity in conscious, unrestrained guinea pigs,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 5, pp. 1442–1449, 1998. View at Scopus
  56. H. H. A. Ferreira, E. Bevilacqua, S. M. Gagioti et al., “Nitric oxide modulates eosinophil infiltration in antigen-induced airway inflammation in rats,” European Journal of Pharmacology, vol. 358, no. 3, pp. 253–259, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. K. A. Fagan, R. C. Tyler, K. Sato et al., “Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation,” American Journal of Physiology, vol. 277, no. 3, part 1, pp. L472–L478, 1999. View at Scopus
  58. J. De Boer, H. Meurs, L. Flendrig, M. Koopal, and J. Zaagsma, “Role of nitric oxide and superoxide in allergen-induced airway hyperreactivity after the late asthmatic reaction in guinea-pigs,” British Journal of Pharmacology, vol. 133, no. 8, pp. 1235–1242, 2001.
  59. H. Lührs, T. Papadopoulos, H. H. H. W. Schmidt, and T. Menzel, “Type I nitric oxide synthase in the human lung is predominantly expressed in capillary endothelial cells,” Respiration Physiology, vol. 129, no. 3, pp. 367–374, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Koarai, M. Ichinose, H. Sugiura et al., “iNOS depletion completely diminishes reactive nitrogen-species formation after an allergic response,” European Respiratory Journal, vol. 20, no. 3, pp. 609–616, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. N. J. Kenyon, K. Gohil, and J. A. Last, “Susceptibility to ovalbumin-induced airway inflammation and fibrosis in inducible nitric oxide synthetase-deficient mice: Mechanisms and consequences,” Toxicology and Applied Pharmacology, vol. 191, no. 1, pp. 2–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Y. Poon, E. Raharjo, K. D. Patel, S. Tavener, and P. Kubes, “Complexity of inducible nitric oxide synthase: cellular source determines benefit versus toxicity,” Circulation, vol. 108, no. 9, pp. 1107–1112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. P. J. Barnes, “NO or no NO in asthma?” Thorax, vol. 51, pp. 218–220, 1996.
  64. C. M. Hogaboam, C. S. Gallinat, C. Bone-Larson, et al., “Collagen deposition in a non-fibrotic lung granuloma model after nitric oxide inhibition,” The American Journal of Pathology, vol. 153, pp. 1861–1872, 1998.
  65. L. E. Gustafsson, A. M. Leone, M. G. Persson, N. P. Wiklund, and S. Moncada, “Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans,” Biochemical and Biophysical Research Communications, vol. 181, no. 2, pp. 852–857, 1991. View at Scopus
  66. S. A. Kharitonov, D. Yates, R. A. Robbins, R. Logan-Sinclair, E. A. Shinebourne, and P. J. Barnes, “Increased nitric oxide in exhaled air of asthmatic patients,” Lancet, vol. 343, no. 8890, pp. 133–135, 1994. View at Publisher · View at Google Scholar · View at Scopus
  67. M. G. Persson, O. Zetterström, V. Agrenius, E. Ihre, and L. E. Gustafsson, “Single-breath nitric oxide measurements in asthmatic patients and smokers,” Lancet, vol. 343, no. 8890, pp. 146–147, 1994. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Belvisi, P. J. Barnes, S. Larkin et al., “Nitric oxide synthase activity is elevated in inflammatory lung disease in humans,” European Journal of Pharmacology, vol. 283, no. 1–3, pp. 255–258, 1995. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Deykin, O. Halpern, A. F. Massaro, J. M. Drazen, and E. Israel, “Expired nitric oxide after bronchoprovocation and repeated spirometry in patients with asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 3, part 1, pp. 769–775, 1998. View at Scopus
  70. S. Mehta, C. M. Lilly, J. E. Rollenhagen, K. J. Haley, K. Asano, and J. M. Drazen, “Acute and chronic effects of allergic airway inflammation on pulmonary nitric oxide production,” American Journal of Physiology, vol. 272, no. 1, pp. L124–L131, 1997. View at Scopus
  71. E. A. Leick-Maldonado, F. U. Kay, M. C. Leonhardt et al., “Comparison of glucocorticoid and cysteinyl leukotriene receptor antagonist treatments in an experimental model of chronic airway inflammation in guinea-pigs,” Clinical and Experimental Allergy, vol. 34, no. 1, pp. 145–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. S. A. Kharitonov, D. H. Yates, and P. J. Barnes, “Inhaled glucocorticoids decrease nitric oxide in exhaled air of asthmatic patients,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 1, pp. 454–457, 1996. View at Scopus
  73. F. P. Gómez, G. M. Pallí, J. A. Barberà, J. Roca, and R. Rodríguez-Roisin, “Measurement of exhaled nitric oxide in healthy subjects,” Medicina Clinica, vol. 111, no. 1, pp. 1–5, 1998. View at Scopus
  74. C. Brindicci, K. Ito, P. J. Barnes, and S. A. Kharitonov, “Effect of an inducible nitric oxide synthase inhibitor on differential flow-exhaled nitric oxide in asthmatic patients and healthy volunteers,” Chest, vol. 132, no. 2, pp. 581–588, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. D. H. Yates, S. A. Kharitonov, P. S. Thomas, and P. J. Barnes, “Endogenous nitric oxide is decreased in asthmatic patients by an inhibitor of inducible nitric oxide synthase,” American Journal of Respiratory and Critical Care Medicine, vol. 154, no. 1, pp. 247–250, 1996. View at Scopus
  76. D. H. Yates, S. A. Kharitonov, and P. J. Barnes, “Effect of short- and long-acting inhaled β2-agonists on exhaled nitric oxide in asthmatic patients,” European Respiratory Journal, vol. 10, no. 7, pp. 1483–1488, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. R. A. Dweik, R. L. Sorkness, S. Wenzel, et al., “Use of exhaled nitric oxide measurement to identify a reactive, at-risk phenotype among patients with asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 10, pp. 1033–1041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Lim, A. Jatakanon, S. Meah, T. Oates, K. F. Chung, and P. J. Barnes, “Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in mild to moderately severe asthma,” Thorax, vol. 55, no. 3, pp. 184–188, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Pisi, M. Aiello, P. Tzani, E. Marangio, D. Olivieri, and A. Chetta, “Measurement of fractional exhaled nitric oxide by a new portable device: comparison with the standard technique,” Journal of Asthma, vol. 47, no. 7, pp. 805–809, 2010. View at Publisher · View at Google Scholar
  80. G. Ciprandi, M. A. Tosca, and M. Capasso, “Exhaled nitric oxide in children with allergic rhinitis and/or asthma: a relationship with bronchial hyperreactivity,” Journal of Asthma, vol. 47, no. 10, pp. 1142–1147, 2010.
  81. H. L. Petsky, C. J. Cates, T. J. Lasserson, et al., “A systematic review and meta-analysis: tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils),” Thorax, 2010. In press.
  82. S. A. Kharitonov and P. J. Barnes, “Clinical aspects of exhaled nitric oxide,” European Respiratory Journal, vol. 16, no. 4, pp. 781–792, 2000. View at Scopus
  83. K. Alving, C. Fornhem, E. Weitzberg, and J. M. Lundberg, “Nitric oxide mediates cigarette smoke-induced vasodilatory responses in the lung,” Acta Physiologica Scandinavica, vol. 146, no. 3, pp. 407–408, 1992. View at Scopus
  84. A. Ialenti, A. Ianaro, S. Moncada, and M. Di Rosa, “Modulation of acute inflammation by endogenous nitric oxide,” European Journal of Pharmacology, vol. 211, no. 2, pp. 177–182, 1992. View at Publisher · View at Google Scholar · View at Scopus
  85. J. S. Erjefalt, I. Erjefalt, F. Sundler, and C. G. A. Persson, “Mucosal nitric oxide may tonically suppress airways plasma exudation,” American Journal of Respiratory and Critical Care Medicine, vol. 150, no. 1, pp. 227–232, 1994. View at Scopus
  86. S. Mehta, J. Boudreau, C. M. Lilly, and J. M. Drazen, “Endogenous pulmonary nitric oxide in the regulation of airway microvascular leak,” American Journal of Physiology, vol. 275, no. 5, pp. L961–L968, 1998. View at Scopus
  87. H. P. Kuo, S. Liu, and P. J. Barnes, “The effect of endogenous nitric oxide on neurogenic plasma exudation in guinea-pig airways,” European Journal of Pharmacology, vol. 221, no. 2-3, pp. 385–388, 1992. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Ziche, L. Morbidelli, A. Parenti, S. Amerini, H. J. Granger, and C. A. Maggi, “Substance P increases cyclic GMP levels on coronary postcapillary venular endothelial cells,” Life Sciences, vol. 53, no. 14, pp. PL229–PL234, 1993. View at Scopus
  89. L. S. Nguyen, A. C. Villablanca, and J. C. Rutledge, “Substance P increases microvascular permeability via nitric oxide-mediated convective pathways,” American Journal of Physiology, vol. 268, no. 4, pp. R1060–R1068, 1995. View at Scopus
  90. M. Bernareggi, J. A. Mitchell, P. J. Barnes, and M. C. Belvisi, “Dual action of nitric oxide on airway plasma leakage,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 3, pp. 869–874, 1997. View at Scopus
  91. R. Kishen and B. J. Pleuvry, “Some actions of sodium nitroprusside and glyceryl trinitrate on guinea-pig isolated trachealis muscle,” Journal of Pharmacy and Pharmacology, vol. 37, no. 7, pp. 502–504, 1985. View at Scopus
  92. F. P. Nijkamp and G. Folkerts, “Nitric oxide and bronchial reactivity,” Clinical and Experimental Allergy, vol. 24, no. 10, pp. 905–914, 1994. View at Publisher · View at Google Scholar · View at Scopus
  93. P. M. Dupuy, S. A. Shore, J. M. Drazen, C. Frostell, W. A. Hill, and W. M. Zapol, “Bronchodilator action of inhaled nitric oxide in guinea pigs,” Journal of Clinical Investigation, vol. 90, no. 2, pp. 421–428, 1992. View at Scopus
  94. M. Högman, C. Frostell, H. Arnberg, and G. Hedenstierna, “Inhalation of nitric oxide modulates methacholine-induced bronchoconstriction in the rabbit,” European Respiratory Journal, vol. 6, no. 2, pp. 177–180, 1993. View at Scopus
  95. R. G. Knowles and S. Moncada, “Nitric oxide as a signal in blood vessels,” Trends in Biochemical Sciences, vol. 17, no. 10, pp. 399–402, 1992. View at Scopus
  96. M. G. Persson, S. G. Friberg, P. Hedqvist, and L. E. Gustafsson, “Endogenous nitric oxide counteracts antigen-induced bronchoconstriction,” European Journal of Pharmacology, vol. 249, no. 3, pp. R7–R8, 1993. View at Publisher · View at Google Scholar · View at Scopus
  97. F. P. Nijkamp, H. J. Van der Linde, and G. Folkerts, “Nitric oxide synthesis inhibitors induce airway hyperresponsiveness in the guinea pig in vivo and in vitro: role of the epithelium,” American Review of Respiratory Disease, vol. 148, no. 3, pp. 727–734, 1993. View at Scopus
  98. M. Munakata, Y. Masaki, I. Sakuma et al., “Pharmacological differentiation of epithelium-derived relaxing factor from nitric oxide,” Journal of Applied Physiology, vol. 69, no. 2, pp. 665–670, 1990. View at Scopus
  99. J. De Boer, M. Duyvendak, F. E. Schuurman, F. M. H. Pouw, J. Zaagsma, and H. Meurs, “Role of L-arginine in the deficiency of nitric oxide and airway hyperreactivity after the allergen-induced early asthmatic reaction in guinea-pigs,” British Journal of Pharmacology, vol. 128, no. 5, pp. 1114–1120, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Kraft, “Part III: location of asthma inflammation and the distal airways: clinical implications,” Current Medical Research and Opinion, vol. 23, supplement 3, pp. S21–S27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Lanças, D. I. Kasahara, C. M. Prado, I. F. L. C. Tibério, M. A. Martins, and M. Dolhnikoff, “Comparison of early and late responses to antigen of sensitized guinea pig parenchymal lung strips,” Journal of Applied Physiology, vol. 100, no. 5, pp. 1610–1616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. J. C. C. M. In 't Veen, A. J. Beekman, E. H. Bel, and P. J. Sterk, “Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 6, pp. 1902–1906, 2000. View at Scopus
  103. T. Mauad, A. Carolina, G. Xavier, P. Hilário, N. Saldiva, and M. Dolhnikoff, “Elastosis and fragmentation of fibers of the elastic system in fatal asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 3, pp. 968–975, 1999. View at Scopus
  104. P. Angeli, C. M. Prado, D. G. Xisto et al., “Effects of chronic L-NAME treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation,” American Journal of Physiology, vol. 294, no. 6, pp. L1197–L1205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. C. M. Starling, C. M. Prado, E. A. Leick-Maldonado et al., “Inducible nitric oxide synthase inhibition attenuates lung tissue responsiveness and remodeling in a model of chronic pulmonary inflammation in guinea pigs,” Respiratory Physiology and Neurobiology, vol. 165, no. 2-3, pp. 185–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. D. A. Taylor, J. L. McGrath, B. J. O'Connor, and P. J. Barnes, “Allergen-induced early and late asthmatic responses are not affected by inhibition of endogenous nitric oxide,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 1, pp. 99–106, 1998. View at Scopus
  107. M. G. Belvisi, C. D. Stretton, M. Yacoub, and P. J. Barnes, “Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans,” European Journal of Pharmacology, vol. 210, no. 2, pp. 221–222, 1992. View at Publisher · View at Google Scholar · View at Scopus
  108. C. M. Prado, E. A. Leick-Maldonado, L. Miyamoto et al., “Capsaicin-sensitive nerves and neurokinins modulate non-neuronal nNOS expression in lung,” Respiratory Physiology and Neurobiology, vol. 160, no. 1, pp. 37–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. M. A. Martins, S. A. Shore, and J. M. Drazen, “Capsaicin-induced release of tachykinins: effects of enzyme inhibitors,” Journal of Applied Physiology, vol. 70, no. 5, pp. 1950–1956, 1991. View at Scopus
  110. F. L. M. Ricciardolo, J. A. Nadel, L. Yoshihara, and P. Geppetti, “Evidence for reduction of bradykinin-induced bronchoconstriction in guinea-pigs by release of nitric oxide,” British Journal of Pharmacology, vol. 113, no. 4, pp. 1147–1152, 1994. View at Scopus
  111. A. Samb, M. Pretolani, A.-T. Dinh-Xuan, et al., “Decreased pulmonary and tracheal smooth muscle expression and activity of type 1 nitric oxide synthase (nNOS) after ovalbumin immunization and a multiple aerosol challenge in guinea pigs,” American Journal of Respiratory and Critical Care Medicine, vol. 164, pp. 149–154, 2001.
  112. H. H. Ferreira, M. L. Lodo, A. R. Martins, et al., “Expression of nitric oxide synthases and in vitro migration of eosinophils from allergic rhinits subjects,” European Journal of Pharmacology, vol. 442, no. 1-2, pp. 155–162, 2002.
  113. E. M. Gatto, N. A. Riobó, M. C. Carreras et al., “Overexpression of neutrophil neuronal nitric oxide synthase in Parkinson's disease,” Nitric Oxide, vol. 4, no. 5, pp. 534–539, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. S. S. Greenberg, J. Ouyang, X. Zhao, and T. D. Giles, “Human and rat neutrophils constitutively express neural nitric oxide synthase mRNA,” Nitric Oxide, vol. 2, no. 3, pp. 203–212, 1998. View at Publisher · View at Google Scholar · View at Scopus
  115. K. Maruo, K. I. Kayashima, and T. Ono, “Expression of neuronal nitric oxide synthase in dermal infiltrated eosinophils in eosinophilic pustular folliculitis,” British Journal of Dermatology, vol. 140, no. 3, pp. 417–420, 1999. View at Publisher · View at Google Scholar · View at Scopus
  116. R. Bridi, F. P. Crossetti, V. M. Steffen, and A. T. Henriques, “The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats,” Phytotherapy Research, vol. 15, no. 5, pp. 449–451, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. L. O. Cardell, C. Agustí, and J. A. Nadel, “Nitric Oxide-dependent neutrophil recruitment: role in nasal secretion,” Clinical and Experimental Allergy, vol. 30, no. 12, pp. 1799–1803, 2000. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Trifilieff, Y. Fujitani, F. Mentz, B. Dugas, M. Fuentes, and C. Bertrand, “Inducible nitric oxide synthase inhibitors supress airway inflammation in mice through down-regulation of chemokine expression,” The Journal of Immunology, vol. 165, pp. 1526–1533, 2000.
  119. M. J. S. Miller, J. H. Thompson, X. Liu et al., “Failure of L-NAME to cause inhibition of nitric oxide synthesis: role of inducible nitric oxide synthase,” Inflammation Research, vol. 45, no. 6, pp. 272–276, 1996. View at Publisher · View at Google Scholar · View at Scopus
  120. E. L. Taylor, I. L. Megson, C. Haslett, and A. G. Rossi, “Nitric oxide: a key regulator of myeloid inflammatory cell apoptosis,” Cell Death and Differentiation, vol. 10, no. 4, pp. 418–430, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. K. McCluskie, M. A. Birrell, S. Wong, and M. G. Belvisi, “Nitric oxide as a noninvasive biomarker of lipopolysaccharide-induced airway inflammation: possible role in lung neutrophilia,” Journal of Pharmacology and Experimental Therapeutics, vol. 311, no. 2, pp. 625–633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. H. Iijima, A. Duguet, S. Y. Eum, Q. Hamid, and D. H. Eidelman, “Nitric oxide and protein nitration are eosinophil dependent in allergen-challenged mice,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 5, pp. 1233–1240, 2001. View at Scopus
  123. G. Cirino, S. Fiorucci, and W. C. Sessa, “Endothelial nitric oxide synthase: the Cinderella of inflammation?” Trends in Pharmacological Sciences, vol. 24, no. 2, pp. 91–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Cook, P. Vollenweider, B. Ménard, M. Egli, P. Nicod, and U. Scherrer, “Increased eNO and pulmonary iNOS expression in eNOS null mice,” European Respiratory Journal, vol. 21, no. 5, pp. 770–773, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. H. E. Marshall and J. S. Stamler, “Inhibition of NF-κB by S-nitrosylation,” Biochemistry, vol. 40, no. 6, pp. 1688–1693, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. R. Ten Broeke, R. De Crom, R. Van Haperen et al., “Overexpression of endothelial nitric oxide synthase suppresses features of allergic asthma in mice,” Respiratory Research, vol. 7, article 58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. M. J. Thomassen, L. T. Buhrow, M. J. Connors, F. T. Kaneko, S. C. Erzurum, and M. S. Kavuru, “Nitric oxide inhibits inflammatory cytokine production by human alveolar macrophages,” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 3, pp. 279–283, 1997. View at Scopus
  128. S. Phipps, F. Benyahia, T. T. Ou, J. Barkans, D. S. Robinson, and A. B. Kay, “Acute allergen-induced airway remodeling in atopic asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 31, no. 6, pp. 626–632, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. P. R. Eynott, D. A. Groneberg, G. Caramori et al., “Role of nitric oxide in allergic inflammation and bronchial hyperresponsiveness,” European Journal of Pharmacology, vol. 452, no. 1, pp. 123–133, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. E. C. Gabazza, O. Taguchi, S. Tamaki et al., “Role of nitric oxide in airway remodelling,” Clinical Science, vol. 98, no. 3, pp. 291–294, 2000. View at Scopus
  131. A. M. Hamad and A. J. Knox, “Mechanisms mediating the antiproliferative effects of nitric oxide in cultured human airway smooth muscle cells,” FEBS Letters, vol. 506, no. 2, pp. 91–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  132. H. Ohbayashi and K. Shimokata, “Matrix metalloproteinase-9 and airway remodeling in asthma,” Current Drug Targets: Inflammation and Allergy, vol. 4, no. 2, pp. 177–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Cluzel, M. Damon, P. Chanez, et al., “Enhanced alveolar cell luminol-dependent chemiluminescence in asthma,” Journal of Allergy and Clinical Immunology, vol. 80, no. 2, pp. 195–201, 1987.
  134. H. J. Degenhart, H. C. Raatgeep, H. J. Neijens, and K. F. Kerrebjin, “Oxygen radicals and their production by leucocytes from children with asthma and bronchial hyperresponsiveness,” Clinical Respiratory Physiology, vol. 22, supplement 7, pp. 100–103, 1986.
  135. H. Sugiura and M. Ichinose, “Oxidative and nitrative stress in bronchial asthma,” Antioxidants and Redox Signaling, vol. 10, no. 4, pp. 785–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. L. J. Janssen, M. Premji, S. Netherton, J. Coruzzi, H. Lu-Chao, and P. G. Cox, “Vasoconstrictor actions of isoprostanes via tyrosine kinase and Rho kinase in human and canine pulmonary vascular smooth muscles,” British Journal of Pharmacology, vol. 132, no. 1, pp. 127–134, 2001. View at Scopus
  137. P. Montuschi, P. J. Barnes, and L. J. Roberts II, “Isoprostanes: markers and mediators of oxidative stress,” FASEB Journal, vol. 18, no. 15, pp. 1791–1800, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. L. G. Wood, P. G. Gibson, and M. L. Garg, “Biomarkers of lipid peroxidation, airway inflammation and asthma,” European Respiratory Journal, vol. 21, no. 1, pp. 177–186, 2003. View at Scopus
  139. P. Quaggiotto and M. L. Garg, “Isoprostanes: indicators of oxidative stress in vivo and their biological activity,” in Antioxidant in Human Health and Diseases, T. K. Basu, T. Norman, and M. D. Garg, Eds., pp. 393–410, CAB, Oxford, UK, 1999.
  140. M. R. Mehrabi, N. Serbecic, C. Ekmekcioglu et al., “The isoprostane 8-epi-PGF(2alpha) is a valuable indicator of oxidative injury in human heart valves,” Cardiovascular Pathology, vol. 10, no. 5, pp. 241–245, 2001. View at Publisher · View at Google Scholar · View at Scopus
  141. T. T. Hansel, S. A. Kharitonov, L. E. Donnelly et al., “A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics,” The FASEB Journal, vol. 17, no. 10, pp. 1298–1300, 2003. View at Scopus
  142. D. Singh, D. Richards, R. G. Knowles et al., “Selective inducible nitric oxide synthase inhibition has no effect on allergen challenge in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 10, pp. 988–993, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. D. L. Turner, N. Ferrari, W. R. Ford et al., “TPI 1020, a novel anti-inflammatory, nitric oxide donating compound, potentiates the bronchodilator effects of salbutamol in conscious guinea-pigs,” European Journal of Pharmacology, vol. 641, no. 2-3, pp. 213–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Jonasson, G. Hedenstierna, and J. Hjoberg, “Concomitant administration of nitric oxide and glucocorticoids improves protection against bronchoconstriction in a murine model of asthma,” Journal of Applied Physiology, vol. 109, no. 2, pp. 521–531, 2010. View at Publisher · View at Google Scholar
  145. H. Maarsingh, J. Zaagsma, and H. Meurs, “Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives,” British Journal of Pharmacology, vol. 158, no. 3, pp. 652–664, 2009. View at Publisher · View at Google Scholar · View at Scopus