About this Journal Submit a Manuscript Table of Contents
ISRN Allergy
Volume 2011 (2011), Article ID 869647, 8 pages
http://dx.doi.org/10.5402/2011/869647
Review Article

Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids

1Allergy and Immune Disorders, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
2Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
3Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC 3004, Australia
4Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia

Received 12 November 2011; Accepted 5 December 2011

Academic Editors: V. Calder, C. I. Ezeamuzie, E. A. García-Zepeda, and R. Paganelli

Copyright © 2011 Paul V. Licciardi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions such as probiotic supplementation have been investigated for their pleiotropic effects on microbiota composition and immune function. Probiotics may restore intestinal dysbiosis and improve clinical disease through elevated SCFA levels in the intestine. Although the precise mechanisms by which such dietary factors mediate these effects, SCFA metabolites such as butyrate also function as histone deacetylase inhibitors (HDACi), that can act on the epigenome through chromatin remodeling changes. The aim of this review is to provide an overview of HDAC enzymes and to discuss the biological effects of HDACi. Further, we discuss the important relationship between diet and the balance between health and disease and how novel dietary interventions such as probiotics could be alternative approach for the prevention and/or treatment of chronic inflammatory disease through modulation of the intestinal microbiome.