About this Journal Submit a Manuscript Table of Contents
ISRN Vascular Medicine
Volume 2011 (2011), Article ID 876864, 8 pages
http://dx.doi.org/10.5402/2011/876864
Research Article

Heart Rate Variability in HIV Patients, Diabetics, and Controls: The AGATAA Study

1School of Medicine, University of São Paulo, Sao Paulo, SP, Brazil
2Hospital Universitario, University of São Paulo, Sao Paulo, SP, Brazil
3Instituto de Infectologia Emílio Ribas, São Paulo, SP, Brazil
4Federal University of Espírito Santo, Vitória, ES, Brazil

Received 31 March 2011; Accepted 21 May 2011

Academic Editors: B. Hambly and P. Schoenhagen

Copyright © 2011 Isabela M. Benseñor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. F. Currie, A. J. Jacob, A. R. Foreman, R. A. Elton, R. P. Brettle, and N. A. Boon, “Heart muscle disease related to HIV infection: prognostic implications,” British Medical Journal, vol. 309, no. 6969, pp. 1605–1607, 1994. View at Scopus
  2. G. Barbaro, “HIV-Associated Myocarditis,” Heart Failure Clinics, vol. 1, no. 3, pp. 439–448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. B. M. Mayosi, C. S. Wiysonge, M. Ntsekhe et al., “Clinical characteristics and initial management of patients with tuberculous pericarditis in the HIV era: the Investigation of the Management of Pericarditis in Africa (IMPI Africa) registry,” BMC Infectious Diseases, vol. 6, article 2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Barbaro and S. E. Lipshultz, “Pathogenesis of HIV-associated cardiomyopathy,” Annals of the New York Academy of Sciences, vol. 946, pp. 57–81, 2001. View at Scopus
  5. K. A. Gebo, M. D. Burkey, G. M. Lucas, R. D. Moore, and L. E. Wilson, “Incidence of, risk factors for, clinical presentation, and 1-year outcomes of infective endocarditis in an urban HIV cohort,” Journal of Acquired Immune Deficiency Syndromes, vol. 43, no. 4, pp. 426–432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Reinsch, C. Buhr, P. Krings et al., “Prevalence and risk factors of prolonged QTc interval in HIV-infected patients: results of the HIV-HEART study,” HIV Clinical Trials, vol. 10, no. 4, pp. 261–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. U. Sani and B. N. Okeahialam, “QTc interval prolongation in patients with HIV and AIDS,” Journal of the National Medical Association, vol. 97, no. 12, pp. 1657–1661, 2005. View at Scopus
  8. N. J. Mehta, I. A. Khan, R. N. Mehta, and R. M. Gowda, “Acute coronary syndrome in patients with human immunodeficiency virus disease,” Angiology, vol. 53, no. 5, pp. 545–549, 2002. View at Scopus
  9. L. A. Kingsley, J. Cuervo-Rojas, A. Muñoz et al., “Subclinical coronary atherosclerosis, HIV infection and antiretroviral therapy: multicenter AIDS Cohort Study,” AIDS, vol. 22, no. 13, pp. 1589–1599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. G. Micheletti, G. A. Fishbein, M. C. Fishbein et al., “Coronary atherosclerotic lesions in human immunodeficiency virus-infected patients: a histopathologic study,” Cardiovascular Pathology, vol. 18, no. 1, pp. 28–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Cohen and M. Laudenslager, “Autonomic nervous system in involvement in patients with human immunodeficiency virus infection,” Neurology, vol. 39, no. 8, pp. 1111–1112, 1989. View at Scopus
  12. R. Freeman, M. S. Roberts, L. S. Friedman, and C. Broadbridge, “Autonomic function and human immunodeficiency virus infection,” Neurology, vol. 40, no. 4, pp. 575–580, 1990. View at Scopus
  13. S. Ruttimann, P. Hilti, G. A. Spinas, and U. C. Dubach, “High frequency of human immunodeficiency virus-associated autonomic neuropathy and more severe involvement in advanced stages of human immunodeficiency virus disease,” Archives of Internal Medicine, vol. 151, no. 12, pp. 2441–2443, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. S. B. Welby, S. J. Rogerson, and N. J. Beeching, “Autonomic neuropathy is common in human immunodeficiency virus infection,” Journal of Infection, vol. 23, no. 2, pp. 123–128, 1991. View at Scopus
  15. A. Villa, V. Foresti, and F. Confalonieri, “Autonomic neuropathy and prolongation of QT interval in human immunodeficiency virus infection,” Clinical Autonomic Research, vol. 5, no. 1, pp. 48–52, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Scott, A. Piaggesi, and D. J. Ewing, “Sequential autonomic function tests in HIV infection,” AIDS, vol. 4, no. 12, pp. 1279–1281, 1990. View at Scopus
  17. K. Becker, I. Görlach, T. Frieling, and D. Häussinger, “Characterization and natural course of cardiac autonomic nervous dysfunction in HIV-infected patients,” AIDS, vol. 11, no. 6, pp. 751–757, 1997. View at Scopus
  18. K. E. Rogstad, R. Shah, G. Tesfaladet, M. Abdullah, and I. Ahmed-Jushuf, “Cardiovascular autonomic neuropathy in HIV infected patients,” Sexually Transmitted Infections, vol. 75, no. 4, pp. 264–267, 1999. View at Scopus
  19. P. J. Neild, A. Amadi, P. Ponikowski, A. J. Coats, and B. G. Gazzard, “Cardiac autonomic dysfunction in AIDS is not secondary to heart failure,” International Journal of Cardiology, vol. 74, no. 2-3, pp. 133–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. K. A. Brownley, J. R. Milanovich, S. J. Motivala et al., “Autonomic and cardiovascular function in HIV spectrum disease: early indications of cardiac pathophysiology,” Clinical Autonomic Research, vol. 11, no. 5, pp. 319–326, 2001.
  21. D. Nzuobontane, B. K. Ngu, and K. Christopher, “Cardiovascular autonomic dysfunction in Africans infected with human immunodeficiency virus,” Journal of the Royal Society of Medicine, vol. 95, no. 9, pp. 445–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. C. M. Mittal, N. Wig, S. Mishra, and K. K. Deepak, “Heart rate variability in human immunodeficiency virus-positive individuals,” International Journal of Cardiology, vol. 94, no. 1, pp. 1–6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. C. Chow, R. Wood, A. Grandinetti, C. Shikuma, I. Schatz, and P. Low, “Cardiovagal autonomic dysfunction in relation to HIV-associated lipodystrophy,” HIV Clinical Trials, vol. 7, no. 1, pp. 16–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Sakhuja, A. Goyal, A. K. Jaryal et al., “Heart rate variability and autonomic function tests in HIV positive individuals in India,” Clinical Autonomic Research, vol. 17, no. 3, pp. 193–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Compostella, L. Compostella, and R. D'Elia, “Cardiovascular autonomic neuropathy in HIV-positive African patients,” Minerva Cardioangiologica, vol. 56, no. 4, pp. 417–428, 2008. View at Scopus
  26. D. Correia, L. A. P. Rodrigues De Resende, R. J. Molina et al., “Power spectral analysis of heart rate variability in HIV-infected and AIDS patients,” PACE—Pacing and Clinical Electrophysiology, vol. 29, no. 1, pp. 53–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. WHO Expert Committee, “Physical status: the use and interpretation of anthropometry,” Technical Report Serie 1995.
  28. J. C. Seidell, H. S. Kahn, D. F. Williamson, L. Lissner, and R. Valdez, “Report from a centers for disease control and prevention workshop on use of adult anthropometry for public health and primary health care,” American Journal of Clinical Nutrition, vol. 73, no. 1, pp. 123–126, 2001. View at Scopus
  29. M. Malik, A. J. Camm, J. T. Bigger Jr. et al., “Heart rate variability. Standards of measurement, physiological interpretation, and clinical use,” European Heart Journal, vol. 17, no. 3, pp. 354–381, 1996.
  30. A. Boardman, F. S. Schlinwein, A. P. Rocha, and A. Leite, “A study on the optimum order of autoregressive models for heart rate variability. Matlab-customized software developed in our laboratory was used in the temporal and spectral analysis,” Physiological Measurement, vol. 23, pp. 325–326, 2002.
  31. “Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7),” http://www.nhlbi.nih.gov/guidelines/hypertension/.
  32. American Diabetes Association, “Standards of medical care in diabetes—2007,” Diabetes Care, vol. 30, supplement 1, pp. S4–S41, 2007.
  33. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Pressure in Adults (Adult Treatment Panel III), “Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol (Adult Treatment Panel III) final report,” Circulation, vol. 106, pp. 3143–3421, 2002.
  34. R. E. Maser and M. J. Lenhard, “REVIEW: cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 10, pp. 5896–5903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. D. Rollins, J. G. Jenkins, D. J. Carson, B. G. McClure, R. H. Mitchell, and S. Z. Imam, “Power spectral analysis of the electrocardiogram in diabetic children,” Diabetologia, vol. 35, no. 5, pp. 452–455, 1992. View at Scopus
  36. K. Javorka, J. Javorková, M. Petrášková, I. Tonhajzerová, J. Buchanec, and O. Chromá, “Heart rate variability and cardiovascular tests in young patients with diabetes mellitus type 1,” Journal of Pediatric Endocrinology and Metabolism, vol. 12, no. 3, pp. 423–431, 1999.
  37. M. Javorka, I. Žila, T. Balhárek, and K. Javorka, “Heart rate recovery after exercise: relations to heart rate variability and coplexity,” Brazilian Journal of Medical and Biological Research, vol. 35, no. 8, pp. 991–1000, 2002. View at Scopus
  38. J. Gerritsen, J. M. Dekker, B. J. TenVoorde et al., “Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn Study,” Diabetologia, vol. 43, no. 5, pp. 561–570, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Liao, J. Cai, F. L. Brancati et al., “Association of vagal tone with serum insulin, glucose, and diabetes mellitus—the ARIC study,” Diabetes Research and Clinical Practice, vol. 30, no. 3, pp. 211–221, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. J. P. Singh, M. G. Larson, C. J. O'Donnell et al., “Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study),” American Journal of Cardiology, vol. 86, no. 3, pp. 309–312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Lampert, J. D. Bremner, S. Su et al., “Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men,” American Heart Journal, vol. 156, no. 4, pp. 759.e1–759.e7, 2008. View at Publisher · View at Google Scholar · View at Scopus