About this Journal Submit a Manuscript Table of Contents
ISRN Toxicology
Volume 2011 (2011), Article ID 989251, 8 pages
http://dx.doi.org/10.5402/2011/989251
Research Article

Tissue Distribution and Associated Toxicological Effects of Decabrominated Diphenyl Ether in Subchronically Exposed Male Rats

1Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

Received 20 September 2011; Accepted 12 October 2011

Academic Editors: G. Krumschnabel, R. Mateo, and S. M. Waliszewski

Copyright © 2011 Fuxin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. S. Birnbaum and D. F. Staskal, “Brominated flame retardants: cause for concern?” Environmental Health Perspectives, vol. 112, no. 1, pp. 9–17, 2004. View at Scopus
  2. R. A. Hites, “Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations,” Environmental Science & Technology, vol. 38, no. 4, pp. 945–956, 2004. View at Scopus
  3. B. G. Hansen, S. J. Munn, J. De Bruijn et al., European Union Risk Assessment Report-Bis(Pentabromophenyl) Ether, Office for Official Publications of the European Communities, Luxembourg, 2002.
  4. A. Kierkegaard, U. Sellstrom, and M. S. McLachlan, “Environmental analysis of higher brominated diphenyl ethers and decabromodiphenyl ethane,” Journal of Chromatography A, vol. 1216, no. 3, pp. 364–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. de Wit, “An overview of brominated flame retardants in the environment,” Chemosphere, vol. 46, no. 5, pp. 583–624, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Frederiksen, K. Vorkamp, M. Thomsen, and L. E. Knudsen, “Human internal and external exposure to PBDEs-a review of levels and sources,” International Journal of Hygiene and Environmental Health, vol. 212, no. 2, pp. 109–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. de Boer, P. G. Wester, A. van der Horst, and P. E. G. Leonards, “Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands,” Environmental Pollution, vol. 122, no. 1, pp. 63–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Harrad, S. Hazrati, and C. Ibarra, “Concentrations of polychlorinated biphenyls in indoor air and polybrominated diphenyl ethers in indoor air and dust in Birmingham, United Kingdom: Implications for human exposure,” Environmental Science & Technology, vol. 40, no. 15, pp. 4633–4638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. H. Yun, R. Addink, J. M. McCabe et al., “Polybrominated diphenyl ethers and polybrominated biphenyls in sediment and floodplain soils of the Saginaw River watershed, Michigan, USA,” Archives of Environmental Contamination and Toxicology, vol. 55, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Soderstrom, U. Sellstrom, C. A. de Wit, and M Tysklind, “Photolytic debromination of the flame retardant decabromodiphenyl ether (BDE-209),” Environmental Science & Technology, vol. 38, no. 1, pp. 127–132, 2004.
  11. H. M. Stapleton and N. G. Dodder, “Photodegradation of decabromodiphenyl ether in house dust by natural sunlight,” Environmental Toxicology and Chemistry, vol. 27, no. 2, pp. 306–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Kierkegaard, L. Balk, U. Tjorklund, C. A. de Wit, and B. Jansson, “Dietary uptake and biological effects of decabromodiphenyl ether in rainbow trout (Oncorhynchus mykiss),” Environmental Science & Technology, vol. 33, no. 10, pp. 1612–1617, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. H. M. Stapleton, M. Alaee, R. J. Letcher, and J. E. Baker, “Debromination of the flame retardant decabromodiphenyl ether by juvenile carp (Cyprinus carpio) following dietary exposure,” Environmental Science & Technology, vol. 38, no. 1, pp. 112–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. O. Thomas, S. E. W. Moss, L. Asplund, and A. J. Hall, “Absorption of decabromodiphenyl ether and other organohalogen chemicals by grey seals (Halichoerus grypus),” Environmental Pollution, vol. 133, no. 3, pp. 581–586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. E. van den Steen, A. Covaci, V. L. B. Jaspers et al., “Accumulation, tissue-specific distribution and debromination of decabromodiphenyl ether (BDE 209) in European starlings (Sturnus vulgaris),” Environmental Pollution, vol. 148, no. 2, pp. 648–653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. T. van der Ven, T. van de Kuil, P. E. Leonards, et al., “A 28-day oral dose toxicity study in Wistar rats enhanced to detect endocrine effects of decabromodiphenyl ether (decaBDE),” Toxicology Letters, vol. 179, no. 1, pp. 6–14, 2008.
  17. P. O. Darnerud, G. S. Eriksen, T. Johannesson, P. B. Larsen, and M Viluksela, “Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology,” Environment Health Perspectives, vol. 109, supplement 1, pp. 49–68, 2001.
  18. S. D. Shaw, M. L. Berger, D. Brenner, K. Kannan, N. Lohmann, and O. Päpke, “Bioaccumulation of polybrominated diphenyl ethers and hexabromocyclododecane in the northwest Atlantic marine food web,” The Science of the Total Environment, vol. 407, no. 10, pp. 3323–3329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. G. O. Thomas, M. Wilkinson, S. Hodson, and K. C. Jones, “Organohalogen chemicals in human blood from the United Kingdom,” Environmental Pollution, vol. 141, no. 1, pp. 30–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Thuresson, A. Bergman, and K. Jakobsson, “Occupational exposure to commercial decabromodiphenyl ether in workers manufacturing or handling flame-retarded rubber,” Environmental Science & Technology, vol. 39, no. 7, pp. 1980–1986, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. L. H. Tseng, C. W. Lee, M. H. Pan et al., “Postnatal exposure of the male mouse to 2,2′,3,3′,4,4′,5,5′,6,6′-decabrominated diphenyl ether: decreased epididymal sperm functions without alterations in DNA content and histology in testis,” Toxicology, vol. 224, no. 1-2, pp. 33–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Messer, “Mini-review: polybrominated diphenyl ether (PBDE) flame retardants as potential autism risk factors,” Physiology and Behavior, vol. 100, no. 3, pp. 245–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. H. Tseng, M. H. Li, S. S. Tsai et al., “Developmental exposure to decabromodiphenyl ether (PBDE 209): effects on thyroid hormone and hepatic enzyme activity in male mouse offspring,” Chemosphere, vol. 70, no. 4, pp. 640–647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. USEPA, “DecaBDE phase-out initiative,” 2010, http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/deccadbe.html.
  25. G. C. Hu, X. J. Luo, J. Y. Dai et al., “Brominated flame retardants, polychlorinated biphenyls, and organochlorine pesticides in captive giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) from China,” Environmental Science & Technology, vol. 42, no. 13, pp. 4704–4709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. H. M. Stapleton, B. Brazil, R. D. Holbrook et al., “In vivo and in vitro debromination of decabromodiphenyl ether (BDE 209) by juvenile rainbow trout and common carp,” Environmental Science & Technology, vol. 40, no. 15, pp. 4653–4658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. K. Huwe and D. J. Smith, “Accumulation, whole-body depletion and debromination of decabromodiphenyl ether in male Sprague-Dawley rats following dietary exposur,” Environmental Science & Technology, vol. 41, no. 7, pp. 2371–2377, 2007.
  29. K. Thuresson, P. Hoglund, L. Hagmar, A. Sjodin, A. Bergman, and K Jakobsson, “Apparent half-lives of hepta- to deca-brominated diphenyl ethers in human serum as determined in occupationally exposed workers,” Environmental Health Perspectives, vol. 114, no. 2, pp. 176–181, 2006.
  30. B. Mai, S. Chen, X. Luo et al., “Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea,” Environmental Science & Technology, vol. 39, no. 10, pp. 3521–3527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. F. P. Guengerich, “Reactions and significance of cytochrome P-450 enzymes,” Journal of Biological Chemistry, vol. 266, no. 16, pp. 10019–10022, 1991. View at Scopus
  32. S. Hallgren, T. Sinjari, H. Håkansson, and P. Darnerud, “Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin a levels in rats and mice,” Archives of Toxicology, vol. 75, no. 4, pp. 200–208, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. I. A. T. M. Meerts, J. J. van Zanden, E. A. C. Luijks et al., “Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in Vitro,” Toxicological Sciences, vol. 56, no. 1, pp. 95–104, 2000. View at Scopus
  34. T. Zhou, M. M. Taylor, M. J. De Vito, and K. M. Crofton, “Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption,” Toxicological Sciences, vol. 66, no. 1, pp. 105–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Viberg, A. Fredriksson, E. Jakobsson, U. Örn, and P. Erikson, “Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development,” Toxicological Sciences, vol. 76, no. 1, pp. 112–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. D. C. Rice, E. A. Reeve, A. Herlihy, R. Thomas Zoeller, W. Douglas Thompson, and V. P. Markowski, “Developmental delays and locomotor activity in the C57BL6/J mouse following neonatal exposure to the fully-brominated PBDE, decabromodiphenyl ether,” Neurotoxicology and Teratology, vol. 29, no. 4, pp. 511–520, 2007. View at Publisher · View at Google Scholar · View at Scopus