About this Journal Submit a Manuscript Table of Contents
ISRN Botany
Volume 2012 (2012), Article ID 103892, 15 pages
http://dx.doi.org/10.5402/2012/103892
Review Article

Highlights in Seagrasses’ Phylogeny, Physiology, and Metabolism: What Makes Them Special?

Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany

Received 1 October 2012; Accepted 20 November 2012

Academic Editors: M. Kwaaitaal and I. Zarra

Copyright © 2012 Jutta Papenbrock. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. W. D. Larkum, R. J. Orth, and C. M. Duarte, Seagrass: Biology, Ecology and Conservation, Springer, Dordrecht, The Netherlands, 2006.
  2. R. J. Orth, T. J. B. Carruthers, W. C. Dennison et al., “A global crisis for seagrass ecosystems,” BioScience, vol. 56, no. 12, pp. 987–996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. F. T. Short, B. Polidoro, S. R. Livingstone, et al., “Extinction risk assessment of the world's seagrass species,” Biological Conservation, vol. 144, no. 7, pp. 1961–1971, 2011.
  4. A. Heglmeier and C. Zidorn, “Secondary metabolites of Posidonia oceanica (Posidoniaceae),” Biochemical Systematics and Ecology, vol. 38, no. 5, pp. 964–970, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. H. Les, M. A. Cleland, and M. Waycott, “Phylogenetic studies in alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily,” Systematic Botany, vol. 22, no. 3, pp. 443–463, 1997. View at Scopus
  6. C. den Hartog and J. Kuo, “Taxonomy and biogeography of seagrasses,” in Seagrass: Biology, Ecology and Conservation, A. W. D. Larkum, R. J. Orth, and C. M. Duarte, Eds., pp. 1–23, Springer, Dordrecht, The Netherlands, 2006.
  7. L. Wissler, F. M. Codõer, J. Gu et al., “Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life,” BMC Evolutionary Biology, vol. 11, no. 1, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Janssen and K. Bremer, “The age of major monocot groups inferred from 800+ rbcL sequences,” Botanical Journal of the Linnean Society, vol. 146, no. 4, pp. 385–398, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Waycott, G. Procaccini, D. H. Les, and T. Reusch, “A genetic perspective in seagrass evolution, ecology and conservation,” Springer Academic, vol. 2, pp. 25–50, 2006.
  10. J. Kuo and C. den Hartog, “Seagrass taxonomy and identification key,” in Global Seagrass Research Methods, F. T. Short, C. A. Short, and R. G. Coles, Eds., vol. 33, pp. 31–58, Elsevier Science, Amsterdam, The Netherlands, 2001.
  11. M. Uchimura, E. Jean Faye, S. Shimada, T. Inoue, and Y. Nakamura, “A reassessment of Halophila species (Hydrocharitaceae) diversity with special reference to Japanese representatives,” Botanica Marina, vol. 51, no. 4, pp. 258–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. F. T. Short, G. E. Moore, and K. A. Peyton, “Halophila ovalis in the Tropical Atlantic Ocean,” Aquatic Botany, vol. 93, no. 3, pp. 141–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Li and Z. Zhou, “Phylogenetic studies of the core Alismatales inferred from morphology and rbcL sequences,” Progress in Natural Science, vol. 19, no. 8, pp. 931–945, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Y. Chen, J. M. Chen, R. Wahiti Gituru, and Q. F. Wang, “Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae,” BMC Evolutionary Biology, vol. 12, article 30, 2012.
  15. C. Lucas, T. Thangaradjou, and J. Papenbrock, “Development of a DNA barcoding system for seagrasses: successful but not simple,” Public Library of Science ONE, vol. 7, no. 1, Article ID e35107, 2012.
  16. J. L. Olsen, W. T. Stam, J. A. Coyer et al., “North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L.,” Molecular Ecology, vol. 13, no. 7, pp. 1923–1941, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kuo and C. den Hartog, “Seagrass morphology, anatomy and ultrastructure,” in Seagrass: Biology, Ecology and Conservation, A. W. D. Larkum, R. J. Orth, and C. M. Duarte, Eds., pp. 51–87, Springer, Dordrecht, The Netherlands, 2006.
  18. F. Short, T. Carruthers, W. Dennison, and M. Waycott, “Global seagrass distribution and diversity: a bioregional model,” Journal of Experimental Marine Biology and Ecology, vol. 350, no. 1-2, pp. 3–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Marba, M. Holmer, E. Gacia, and C. Barron, “Seagrass beds and coastal biogeochemistry,” in Seagrass: Biology, Ecology and Conservation, A. W. D. Larkum, R. J. Orth, and C. M. Duarte, Eds., pp. 135–157, Springer, Dordrecht, The Netherlands, 2006.
  20. S. Beer, A. Shomer-ilan, and Y. Waisel, “Carbon metabolism in seagrasses: II. Patterns of photos ynthetic CO2 incorporation,” Journal of Experimental Botany, vol. 31, no. 4, pp. 1019–1026, 1980. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Frost-Christensen and K. Sand-Jensen, “The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms,” Oecologia, vol. 91, no. 3, pp. 377–384, 1992. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Raven, A. M. Johnston, J. E. Kübler et al., “Seaweeds in cold seas: evolution and carbon acquisition,” Annals of Botany, vol. 90, no. 4, pp. 525–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Stiling and T. Cornelissen, “How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance,” Global Change Biology, vol. 13, no. 9, pp. 1823–1842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Arnold, C. Mealey, H. Leahey, et al., “Ocean acidification and the loss of phenolic substances in marine plants,” Public Library of Science ONE, vol. 7, no. 4, Article ID e35107, 2012.
  25. A. D. Barnabas, “Apoplastic tracer studies in the leaves of a seagrass. II. Pathway into leaf veins,” Aquatic Botany, vol. 35, no. 3-4, pp. 375–386, 1989. View at Scopus
  26. A. D. Barnabas, “Casparian band-like structures in the root hypodermis of some aquatic angiosperms,” Aquatic Botany, vol. 55, no. 3, pp. 217–225, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Pedersen, J. Borum, C. M. Duarte, and M. D. Fortes, “Oxygen dynamics in the rhizosphere of Cymodocea rotundata,” Marine Ecology Progress Series, vol. 169, pp. 283–288, 1998. View at Scopus
  28. T. van der Heide, L. L. Govers, J. Fouw et al., “A three-stage symbiosis forms the foundation of seagrass ecosystems,” Science, vol. 336, no. 6087, pp. 1432–1434, 2012.
  29. I. Johansson, M. Karlsson, U. Johanson, C. Larsson, and P. Kjellbom, “The role of aquaporins in cellular and whole plant water balance,” Biochimica et Biophysica Acta, vol. 1465, no. 1-2, pp. 324–342, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Maestrini, T. Giordani, A. Lunardi, A. Cavallini, and L. Natali, “Isolation and expression of two aquaporin-encoding genes from the marine phanerogam Posidonia oceanica,” Plant and Cell Physiology, vol. 45, no. 12, pp. 1838–1847, 2004. View at Scopus
  31. R. Cozza and T. Pangaro, “Tissue expression pattern of two aquaporin-encoding genes in different organs of the seagrass Posidonia oceanica,” Aquatic Botany, vol. 91, no. 2, pp. 117–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. H. Attaway, P. L. Parker, and J. A. Mears, “Normal alkanes of five coastal spermatophytes,” Publications of the Institute of Marine Science, University of Texas, vol. 15, pp. 13–19, 1970.
  33. F. T. Gillan, R. W. Hogg, and E. A. Drew, “The sterol and fatty acid compositions of seven tropical seagrasses from North Queensland, Australia,” Phytochemistry, vol. 23, no. 12, pp. 2817–2821, 1984. View at Scopus
  34. C. McMillan, S. C. Williams, L. Escobar, and O. Zapata, “Isoenzymes, secondary compounds and experimental cultures of Australian seagrasses in Halophila, Halodule, Zostera, Amphibolis and Posidonia,” Australian Journal of Botany, vol. 29, pp. 247–260, 1981.
  35. C. McMillan, “Sulfated flavonoids and leaf morphology of the Halophila ovalis-H. minor complex (hydrocharitaceae) in the Pacific Islands and Australia,” Aquatic Botany, vol. 16, no. 4, pp. 337–347, 1983. View at Scopus
  36. T. M. Arnold and N. M. Targett, “Marine tannins: the importance of a mechanistic framework for predicting ecological roles,” Journal of Chemical Ecology, vol. 28, no. 10, pp. 1919–1934, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. L. H. Vergeer, T. L. Aarts, and J. D. De Groot, “The “wasting disease” and the effect of abiotic factors (light intensity, temperature, salinity) and infection with Labyrinthula zosterae on the phenolic content of Zostera marina shoots,” Aquatic Botany, vol. 52, no. 1-2, pp. 35–44, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Boudet, “Evolution and current status of research in phenolic compounds,” Phytochemistry, vol. 68, no. 22–24, pp. 2722–2735, 2007.
  39. J. S. Todd, R. C. Zimmerman, P. Crews, and R. S. Alberte, “The antifouling activity of natural and synthetic phenolic acid sulphate esters,” Phytochemistry, vol. 34, no. 2, pp. 401–404, 1993. View at Scopus
  40. R. C. Quackenbush, D. Bunn, and W. Lingren, “HPLC determination of phenolic acids in the water-soluble extract of Zostera marina L. (eelgrass),” Aquatic Botany, vol. 24, no. 1, pp. 83–89, 1986. View at Scopus
  41. O. Zapata and C. McMillan, “Phenolic acids in seagrasses,” Aquatic Botany, vol. 7, pp. 307–317, 1979. View at Scopus
  42. J. B. Harborne and C. A. Williams, “Occurrence of sulphated flavones and caffeic acid esters in members of the fluviales,” Biochemical Systematics and Ecology, vol. 4, no. 1, pp. 37–41, 1976. View at Scopus
  43. C. McMillan, O. Zapata, and L. Escobar, “Sulphated phenolic compounds in seagrasses,” Aquatic Botany, vol. 8, pp. 267–278, 1980. View at Scopus
  44. S. Agostini, J. M. Desjobert, and G. Pergent, “Distribution of phenolic compounds in the seagrass Posidonia oceanica,” Phytochemistry, vol. 48, no. 4, pp. 611–617, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Nuissier, B. Rezzonico, and M. Grignon-Dubois, “Chicoric acid from Syringodium filiforme,” Food Chemistry, vol. 120, no. 3, pp. 783–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Meng, A. J. Krzysiak, M. J. Durako, J. I. Kunzelman, and J. L. C. Wright, “Flavones and flavone glycosides from Halophila johnsonii,” Phytochemistry, vol. 69, no. 14, pp. 2603–2608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Bitam, M. L. Ciavatta, M. Carbone, E. Manzo, E. Mollo, and M. Gavagnin, “Chemical analysis of flavonoid constituents of the seagrass Halophila stipulacea: first finding of malonylated derivatives in marine phanerogams,” Biochemical Systematics and Ecology, vol. 38, no. 4, pp. 686–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. T. M. Arnold, C. E. Tanner, M. Rothen, and J. Bullington, “Wound-induced accumulations of condensed tannins in turtlegrass, Thalassia testudinum,” Aquatic Botany, vol. 89, no. 1, pp. 27–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. P. G. Harrison, “Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory,” Aquatic Botany, vol. 35, no. 3-4, pp. 263–288, 1989. View at Scopus
  50. O. Dumay, J. Costa, J. M. Desjobert, and G. Pergent, “Variations in the concentration of phenolic compounds in the seagrass Posidonia oceanica under conditions of competition,” Phytochemistry, vol. 65, no. 24, pp. 3211–3220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. V. A. Klap, M. A. Hemminga, and J. J. Boon, “Retention of lignin in seagrasses: angiosperms that returned to the sea,” Marine Ecology Progress Series, vol. 194, pp. 1–11, 2000. View at Scopus
  52. J. M. Espiñeira, E. Uzal, L. V. Gómez Ros et al., “Distribution of lignin monomers and the evolution of lignification among lower plants,” Plant Biology, vol. 13, no. 1, pp. 59–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Jin, S. Shao, K. S. Katsumata, and K. Iiyama, “Lignin characteristics of peculiar vascular plants,” Journal of Wood Science, vol. 53, no. 6, pp. 520–523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. P. T. Martone, J. M. Estevez, F. Lu et al., “Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture,” Current Biology, vol. 19, no. 2, pp. 169–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Kristensen, S. Coulson, and A. Gordon, “THM PyGC-MS of wood fragment and vegetable fibre forensic samples,” Journal of Analytical and Applied Pyrolysis, vol. 86, no. 1, pp. 90–98, 2009.
  56. A. R. Barceló, L. V. G. Ros, and A. E. Carrasco, “Looking for syringyl peroxidases,” Trends in Plant Science, vol. 12, no. 11, pp. 486–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Mathé, A. Barre, C. Jourda, and C. Dunand, “Evolution and expression of class III peroxidases,” Archives of Biochemistry and Biophysics, vol. 500, no. 1, pp. 58–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Duroux and K. G. Welinder, “The peroxidase gene family in plants: a phylogenetic overview,” Journal of Molecular Evolution, vol. 57, no. 4, pp. 397–407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Lucas, Classification and characterization of seagrass species using DNA barcoding and physiological parameters [M.S. thesis], Leibniz University Hannover, Hanover, Germany, 2011.
  60. D. C. Rowley, M. S. T. Hansen, D. Rhodes et al., “Thalassiolins A–C: new marine-derived inhibitors of HIV cDNA integrase,” Bioorganic and Medicinal Chemistry, vol. 10, no. 11, pp. 3619–3625, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. P. R. Jensen, K. M. Jenkins, D. Porter, and W. Fenical, “Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudinum against Zoosporic fungi,” Applied and Environmental Microbiology, vol. 64, no. 4, pp. 1490–1496, 1998. View at Scopus
  62. S. H. Qi, S. Zhang, P. Y. Qian, and B. G. Wang, “Antifeedant, antibacterial, and antilarval compounds from the South China Sea seagrass Enhalus acoroides,” Botanica Marina, vol. 51, no. 5, pp. 441–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Cannac, L. Ferrat, C. Pergent-Martini, G. Pergent, and V. Pasqualini, “Effects of fish farming on flavonoids in Posidonia oceanica,” Science of the Total Environment, vol. 370, no. 1, pp. 91–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Cannac, L. Ferrat, T. Barboni, G. Pergent, and V. Pasqualini, “The influence of tissue handling on the flavonoid content of the aquatic plant Posidonia oceanica,” Journal of Chemical Ecology, vol. 33, no. 5, pp. 1083–1088, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. N. M. Gavin and M. J. Durako, “Localization and antioxidant capacity of flavonoids from intertidal and subtidal Halophila johnsonii and Halophila decipiens,” Aquatic Botany, vol. 95, no. 3, pp. 242–247, 2011.
  66. M. Takagi, S. Funahashi, K. Ohta T, and T. Nakabayashi, “Phyllosadine, a new flavonoidal alkaloid from the sea-grass Phyllospadix iwatensis,” Agricultural and Biological Chemistry, vol. 44, no. 12, pp. 3019–3020, 1980.
  67. I. Kontiza, M. Stavri, M. Zloh, C. Vagias, S. Gibbons, and V. Roussis, “New metabolites with antibacterial activity from the marine angiosperm Cymodocea nodosa,” Tetrahedron, vol. 64, no. 8, pp. 1696–1702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. E. A. Drew, “Sugars, cytolitols and seagrass phylogeny,” Aquatic Botany, vol. 15, no. 4, pp. 387–408, 1983. View at Scopus
  69. E. A. Drew, “Factors affecting photosynthesis and its seasonal variation in the seagrasses Cymodocea nodosa (Ucria) Aschers, and Posidonia oceanica (L.) Delile in the Mediterranean,” Journal of Experimental Marine Biology and Ecology, vol. 31, no. 2, pp. 173–194, 1978. View at Scopus
  70. S. D. Tyerman, A. I. Hatcher, R. J. West, and A. W. D. Larkum, “Posidonia australis growing in altered salinities: leaf growth, regulation of turgor and the development of osmotic gradients,” Australian Journal of Plant Physiology, vol. 11, no. 1-2, pp. 35–47, 1984. View at Scopus
  71. V. H. Pomin, “Structural and functional insights into sulfated galactans: a systematic review,” Glycoconjugate Journal, vol. 27, no. 1, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. R. S. Aquino, A. M. Landeira-Fernandez, A. P. Valente, L. R. Andrade, and P. A. S. Mourão, “Occurrence of sulfated galactans in marine angiosperms: evolutionary implications,” Glycobiology, vol. 15, no. 1, pp. 11–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. R. S. Aquino, C. Grativol, and P. A. S. Mourão, “Rising from the sea: correlations between sulfated polysaccharides and salinity in plants,” PLoS ONE, vol. 6, no. 4, Article ID e18862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Michel, T. Tonon, D. Scornet, J. M. Cock, and B. Kloareg, “The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes,” New Phytologist, vol. 188, no. 1, pp. 82–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. L. A. Lewis and R. M. McCourt, “Green algae and the origin of land plants,” American Journal of Botany, vol. 91, no. 10, pp. 1535–1556, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. J. M. Cock, L. Sterck, P. Rouzé, et al., “The Ectocarpus genome and the independent evolution of multicellularity in brown algae,” Nature, vol. 465, pp. 617–621, 2010.
  77. F. G. Donnan, “The theory of membrane equilibria,” Chemical Reviews, vol. 1, no. 1, pp. 73–90, 1924. View at Scopus
  78. G. E. Shaw, “Bio-controlled thermostasis involving the sulfur cycle,” Climatic Change, vol. 5, no. 3, pp. 297–303, 1983. View at Publisher · View at Google Scholar · View at Scopus
  79. J. W. H. Dacey and N. V. Blough, “Hydroxide decomposition of dimethysulfoniopropionate to form dimethylsulfide,” Geophysical Research Letters, vol. 14, no. 12, pp. 1246–1249, 1987. View at Scopus
  80. J. W. H. Dacey, G. M. King, and P. S. Lobel, “Herbivory by reef fishes and the production of dimethylsulfide and acrylic acid,” Marine Ecology Progress Series, vol. 112, no. 1-2, pp. 67–74, 1994. View at Scopus
  81. P. H. Nienhuis, “Background levels of heavy metals in nine tropical seagrass species in Indonesia,” Marine Pollution Bulletin, vol. 17, no. 11, pp. 508–511, 1986. View at Scopus
  82. V. A. Catsiki and P. Panayotidis, “Copper, chromium and nickel in tissues of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa (Potamogetonaceae) from Greek coastal areas,” Chemosphere, vol. 26, no. 5, pp. 963–978, 1993. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Govindasamy, M. Arulpriya, P. Ruban, J. L. Francisca, and A. Ilayaraja, “Concentration of heavy metals in seagrasses tissue of the Palk Strait, Bay of Bengal,” Environmental Sciences, vol. 2, no. 1, pp. 145–153, 2011.
  84. C. Lafabrie, C. Pergent-Martini, and G. Pergent, “Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean),” Environmental Pollution, vol. 151, no. 1, pp. 262–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. L. Marín-Guirao, A. M. Atucha, J. L. Barba, E. M. López, and A. J. García Fernández, “Effects of mining wastes on a seagrass ecosystem: metal accumulation and bioavailability, seagrass dynamics and associated community structure,” Marine Environmental Research, vol. 60, no. 3, pp. 317–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Li and X. Huang, “Three tropical seagrasses as potential bio-indicators to trace metals in Xincun Bay, Hainan Island, South China,” Chinese Journal of Oceanology and Limnology, vol. 30, no. 2, pp. 212–224, 2012.
  87. T. Thangaradjou, S. Raja, P. Subhashini, E. P. Nobi, and E. Dilipan, “Heavy metal enrichment in the seagrasses of Lakshadweep group of islands—a multivariate statistical analysis,” Environmental Monitoring and Assessment. In press.
  88. T. Alvarez-Legorreta, D. Mendoza-Cozatl, R. Moreno-Sanchez, and G. Gold-Bouchot, “Thiol peptides induction in the seagrass Thalassia testudinum (Banks ex König) in response to cadmium exposure,” Aquatic Toxicology, vol. 86, no. 1, pp. 12–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. A. K. Grennan, “Metallothioneins, a diverse protein family,” Plant Physiology, vol. 155, no. 4, pp. 1750–1751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Cobbett and P. Goldsbrough, “Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis,” Annual Review of Plant Biology, vol. 53, pp. 159–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. C. A. Blindauer and O. I. Leszczyszyn, “Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more,” Natural Product Reports, vol. 27, no. 5, pp. 720–741, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Giordani, L. Natali, B. E. Maserti, S. Taddei, and A. Cavallini, “Characterization and expression of DNA sequences encoding putative type-II metallothioneins in the seagrass Posidonia oceanica,” Plant Physiology, vol. 123, no. 4, pp. 1571–1582, 2000. View at Scopus
  93. R. Cozza, T. Pangaro, P. Maestrini, T. Giordani, L. Natali, and A. Cavallini, “Isolation of putative type 2 metallothionein encoding sequences and spatial expression pattern in the seagrass Posidonia oceanica,” Aquatic Botany, vol. 85, no. 4, pp. 317–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Wyllie-Echeverria, P. Arzel, and P. A. Cox, “Seagrass conservation: lessons from ethnobotany,” Pacific Conservation Biology, vol. 5, no. 4, pp. 333–335, 2000. View at Scopus
  95. P. G. Harrison, “Control of microbial growth and of amphipod grazing by water-soluble compounds from leaves of Zostera marina,” Marine Biology, vol. 67, no. 2, pp. 225–230, 1982. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Villa, D. Albanese, B. Giussani, P. S. Stewart, D. Daffonchio, and F. Cappitelli, “Hindering biofilm formation with zosteric acid,” Biofouling, vol. 26, no. 6, pp. 739–752, 2010. View at Scopus
  97. C. A. Barrios, Q. Xu, T. Cutright, and B. M. Z. Newby, “Incorporating zosteric acid into silicone coatings to achieve its slow release while reducing fresh water bacterial attachment,” Colloids and Surfaces B, vol. 41, no. 2-3, pp. 83–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. S. H. Bhosale, V. L. Nagle, and T. G. Jagtap, “Antifouling potential of some marine organisms from India against species of Bacillus and Pseudomonas,” Marine Biotechnology, vol. 4, no. 2, pp. 111–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. N. Loenko, A. A. Artyukov, E. P. Kozlovskaya, V. A. Miroshnichenko, and G. B. Elyakov, Zosterin, Dal'nauka, Vladivostok, Russia, 1997.
  100. G. Nuissier, F. Diaba, and M. Grignon-Dubois, “Bioactive agents from beach waste: Syringodium flotsam evaluation as a new source of l-chiro-inositol,” Innovative Food Science and Emerging Technologies, vol. 9, no. 3, pp. 396–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. J. F. Ackerman, “Sexual reproduction of seagrasses: pollination in the marine context,” in Seagrass: Biology, Ecology and Conservation, A. W. D. Larkum, R. J. Orth, and C. M. Duarte, Eds., pp. 89–109, Springer, Dordrecht, The Netherlands, 2006.
  102. N. Tanaka, H. Setoguchi, and J. Murata, “Phylogeny of the family hydrocharitaceae inferred from rbcL and matK gene sequence data,” Journal of Plant Research, vol. 110, no. 1099, pp. 329–337, 1997. View at Scopus
  103. M. Waycott, D. W. Freshwater, R. A. York, A. Calladine, and W. J. Kenworthy, “Evolutionary trends in the seagrass genus Halophila (Thouars): insights from molecular phylogeny,” Bulletin of Marine Science, vol. 71, no. 3, pp. 1299–1308, 2002. View at Scopus
  104. Y. Ito and N. Tanaka, “Hybridisation in a tropical seagrass genus, Halodule (Cymodoceaceae), inferred from plastid and nuclear DNA phylogenies,” Telopea, vol. 13, no. 1-2, pp. 219–231, 2011. View at Scopus
  105. Y. Kato, K. Aioi, Y. Omori, N. Takahata, and Y. Satta, “Phylogenetic analyses of Zostera species based on rbcL and matK nucleotide sequences: implications for the origin and diversification of seagrasses in Japanese waters,” Genes and Genetic Systems, vol. 78, no. 5, pp. 329–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. D. H. Les, M. L. Moody, S. W. L. Jacobs, and R. J. Bayer, “Systematics of Seagrasses (Zosteraceae) in Australia and New Zealand,” Systematic Botany, vol. 27, no. 3, pp. 468–484, 2002. View at Scopus
  107. G. Procaccini, L. Mazzella, R. S. Alberte, and D. H. Les, “Chloroplast tRNA(Leu) (UAA) intron sequences provide phylogenetic resolution of seagrass relationships,” Aquatic Botany, vol. 62, no. 4, pp. 269–283, 1999. View at Publisher · View at Google Scholar · View at Scopus