About this Journal Submit a Manuscript Table of Contents
ISRN Optics
Volume 2012 (2012), Article ID 104870, 13 pages
http://dx.doi.org/10.5402/2012/104870
Review Article

Adaptive Optics for Visual Simulation

Laboratorio de Óptica, Instituto Universitario de investigación en Óptica y Nanofísica (IUiOyN), Universidad de Murcia, Campus de Espinardo (Edificio 34), 30100 Murcia, Spain

Received 13 November 2012; Accepted 29 November 2012

Academic Editors: Y. S. Kivshar, V. R. Soma, Y. Tsuji, and S. F. Yu

Copyright © 2012 Enrique Josua Fernández. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Le Grand and S. G. El Hage, Physiological Optics, Springer, Berlin, Germany, 1980.
  2. J. C. Barry, K. Branmann, and M. C. M. Dunne, “Catoptric properties of eyes with misaligned surfaces studied by exact ray tracing,” Investigative Ophthalmology & Visual Science, vol. 38, no. 8, pp. 1476–1484, 1997. View at Scopus
  3. J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Optics Express, vol. 14, no. 22, pp. 10945–10956, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Artal and A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Optics Letters, vol. 23, pp. 1713–1715, 1998. View at Publisher · View at Google Scholar
  5. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” Journal of Vision, vol. 1, no. 1, pp. 1–8, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” Journal of Vision, vol. 4, no. 4, pp. 262–271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” Journal of the Optical Society of America A, vol. 24, no. 10, pp. 3274–3283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Optics Express, vol. 11, no. 20, pp. 2597–2605, 2003. View at Scopus
  9. K. M. Hampson, C. Paterson, C. Dainty, and E. A. H. Mallen, “Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control,” Journal of the Optical Society of America A, vol. 23, no. 5, pp. 1082–1088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. J. Fernández and P. Artal, “Dynamic eye model for adaptive optics testing,” Applied Optics, vol. 46, no. 28, pp. 6971–6977, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye's wave aberration,” Journal of the Optical Society of America. A, vol. 18, no. 3, pp. 497–506, 2001. View at Publisher · View at Google Scholar
  12. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” Journal of Vision, vol. 6, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Artal and J. Tabernero, “The eye's aplanatic answer,” Nature Photonics, vol. 2, no. 10, pp. 586–589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” Journal of the Optical Society of America. A, vol. 18, no. 8, pp. 1793–1803, 2001. View at Publisher · View at Google Scholar
  15. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Optics Letters, vol. 27, no. 1, pp. 37–39, 2002. View at Publisher · View at Google Scholar
  16. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” Journal of the Optical Society of America A, vol. 19, no. 12, pp. 2329–2348, 2002. View at Publisher · View at Google Scholar
  17. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Research, vol. 46, no. 18, pp. 3009–3016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front statistics in a normal young population,” Vision Research, vol. 42, pp. 1611–1617, 2002.
  19. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publications of the Astronomical Society of the Pacific, vol. 65, no. 386, p. 229, 1953.
  20. W. Dreher, J. F. Bille, and R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Applied Optics, vol. 28, no. 4, pp. 804–808, 1989. View at Publisher · View at Google Scholar
  21. S. Goelz, J. J. Persoff, G. D. Bittner, J. Liang, C. T. Hsueh, and J. F. Bille, “New wavefront sensor for metrology of spherical surfaces,” in Active and Adaptive Optical Systems, vol. 1542 of Proceedings of SPIE, pp. 502–511, 1991. View at Publisher · View at Google Scholar
  22. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” Journal of the Optical Society of America A, vol. 11, no. 7, pp. 1949–1957, 1994. View at Scopus
  23. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” Journal of the Optical Society of America A, vol. 17, no. 8, pp. 1388–1398, 2000. View at Scopus
  24. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Optics Express, vol. 14, pp. 6231–6225, 2006.
  25. E. J. Fernández, B. Hermann, B. Považay et al., “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Optics Express, vol. 16, no. 15, pp. 11083–11094, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. E. J. Fernández and W. Drexler, “Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography,” Optics Express, vol. 13, no. 20, pp. 8184–8197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Optics Express, vol. 16, no. 26, pp. 21199–21208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Optics Express, vol. 6, no. 9, pp. 175–185, 2000. View at Scopus
  29. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” Journal of the Optical Society of America A, vol. 14, no. 11, pp. 2884–2892, 1997. View at Scopus
  30. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Optics Letters, vol. 26, no. 10, pp. 746–748, 2001. View at Scopus
  31. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature, vol. 397, no. 6719, pp. 520–522, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Optics Express, vol. 10, no. 9, pp. 405–412, 2002. View at Scopus
  33. B. Hermann, E. J. Fernández, A. Unterhuber et al., “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Optics Letters, vol. 29, no. 18, pp. 2142–2144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. E. J. Fernández, B. Považay, B. Hermann et al., “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Research, vol. 45, no. 28, pp. 3432–3444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Optics Express, vol. 13, no. 2, pp. 400–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Zhang, B. Cense, J. Rha et al., “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Optics Express, vol. 14, no. 10, pp. 4380–4394, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” Journal of the Optical Society of America A, vol. 24, no. 5, pp. 1373–1383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Optics Express, vol. 14, no. 8, pp. 3345–3353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” Journal of the Optical Society of America A, vol. 24, no. 5, pp. 1327–1336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Optics Letters, vol. 33, no. 1, pp. 22–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” Journal of Refractive Surgery, vol. 18, no. 5, pp. S634–S638, 2002. View at Scopus
  42. P. Artal, E. J. Fernández, and S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” Journal of Refractive Surgery, vol. 18, no. 5, pp. S563–S566, 2002. View at Scopus
  43. E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Optics Express, vol. 11, no. 9, pp. 1056–1069, 2003. View at Scopus
  44. P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. Williams, “Neural compensation for the eye's optical aberrations,” Journal of Vision, vol. 4, no. 4, pp. 281–287, 2004. View at Publisher · View at Google Scholar
  45. L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” Journal of Vision, vol. 7, no. 10, pp. 1–9, 2007. View at Publisher · View at Google Scholar
  46. E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” Journal of Vision, vol. 7, no. 8, article 14, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. I. J. Murray, S. L. Elliott, A. Pallikaris, J. S. Werner, S. Choi, and H. J. Tahir, “The oblique effect has an optical component: orientation-specific contrast thresholds after correction of high-order aberrations,” Journal of Vision, vol. 10, no. 11, pp. 1–12, 2010. View at Scopus
  48. E. A. Rossi and A. Roorda, “Is visual resolution after adaptive optics correction susceptible to perceptual learning?” Journal of Vision, vol. 10, no. 12, pp. 1–14, 2010. View at Scopus
  49. L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” Journal of Vision, vol. 10, no. 5, p. 19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” Journal of Vision, vol. 10, no. 12, pp. 1–15, 2010. View at Scopus
  51. R. Sabesan, T. M. Jeong, L. Carvalho, I. G. Cox, D. R. Williams, and G. Yoon, “Vision improvement by correcting higher-order aberrations with customized soft contact lenses in keratoconic eyes,” Optics Letters, vol. 32, no. 8, pp. 1000–1003, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Sabesan and G. Yoon, “Visual performance after correcting higher order aberrations in Keratoconic eyes,” Journal of Vision, vol. 9, no. 5, article 6, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Sabesan and G. Yoon, “Neural compensation for long-term asymmetric optical blur to improve visual performance in keratoconic eyes,” Investigative Ophthalmology & Visual Science, vol. 51, no. 7, pp. 3835–3839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. L. M. Smithline, “Accommodative response to blur,” Journal of the Optical Society of America, vol. 64, no. 11, pp. 1512–1516, 1974. View at Publisher · View at Google Scholar · View at Scopus
  55. K. F. Ciuffreda, “Accommodation and its anomalies,” in Vision and Visual Dysfunction, J. R. Cronly-Dillon, Ed., Macmillan, New York, NY, USA, 1991.
  56. L. Stark and Y. Takahashi, “Absence of an odd-error signal mechanism in human accommodation,” IEEE Transactions on Biomedical Engineering, vol. 12, no. 3-4, pp. 138–146, 1965. View at Publisher · View at Google Scholar
  57. E. F. Fincham, “The accommodation reflex and its stimulus,” British Journal of Ophthalmology, vol. 35, pp. 5–80, 1951.
  58. P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sánchez, “Chromatic aberration and ocular focus: fincham revisited,” Vision Research, vol. 33, no. 10, pp. 1397–1411, 1993. View at Publisher · View at Google Scholar
  59. K. R. Aggarwala, E. S. Kruger, S. Mathews, and P. B. Kruger, “Spectral bandwidth and ocular accommodation,” Journal of the Optical Society of America A, vol. 12, no. 3, pp. 450–455, 1995. View at Publisher · View at Google Scholar
  60. F. W. Campbell and G. Westheimer, “Factors influencing accommodation responses of the human eye,” Journal of the Optical Society of America, vol. 49, pp. 568–571, 1959.
  61. W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic and Physiological Optics, vol. 8, pp. 153–164, 1988.
  62. B. J. Wilson, K. E. Decker, and A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” Journal of the Optical Society of America A, vol. 19, pp. 833–839, 2002. View at Publisher · View at Google Scholar
  63. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” Journal of the Optical Society of America A, vol. 23, no. 1, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clinical and Experimental Optometry, vol. 92, no. 3, pp. 227–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus,” Optics Letters, vol. 34, no. 21, pp. 3274–3276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” Journal of Vision, vol. 9, no. 6, article 4, pp. 1–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. F. W. Campbell and D. G. Green, “Monocular versus binocular visual acuity,” Nature, vol. 208, no. 5006, pp. 191–192, 1965. View at Publisher · View at Google Scholar · View at Scopus
  68. M. R. Clark and H. D. Crane, “Dynamic interaction in binocular vision,” in Eye Movement and the Higher Psychological Functions, J. W. Senders, D. F. Fisher, and R. A. Monty, Eds., pp. 77–88, Erlbaum, New York, NY, USA, 1978.
  69. G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic and Physiological Optics, vol. 9, no. 2, pp. 176–183, 1989.
  70. G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, “Twin channel infrared optometer for recording binocular accomodation,” Optometry and Vision Science, vol. 66, no. 2, pp. 123–129, 1989. View at Scopus
  71. F. Okuyama, T. Tokoro, and M. Fujieda, “Binocular infrared optometer for measuring accommodation in both eyes simultaneously in natural-viewing conditions,” Applied Optics, vol. 32, no. 22, pp. 4147–4154, 1993. View at Publisher · View at Google Scholar
  72. M. Kobayashi, N. Nakazawa, T. Yamaguchi, T. Otaki, Y. Hirohara, and T. Mihashi, “Binocular open-view Shack-Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration,” Applied Optics, vol. 47, no. 25, pp. 4619–4626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Binocular correlation of ocular aberration dynamics,” Optics Express, vol. 16, no. 19, pp. 14731–14745, 2008. View at Publisher · View at Google Scholar
  74. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase,” Optics Express, vol. 17, pp. 11013–11025, 2009.
  75. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Optics Express, vol. 12, no. 17, pp. 4059–4071, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis, vol. 29 of Oxford Psychology Series, Oxford Universit Press, 1995.
  77. R. W. Reading, Binocular Vision: Foundations and Applications, Butterworth-Heinemann, Boston, Mass, USA, 1983.
  78. A. R. Fielder and M. J. Moseley, “Does stereopsis matter in humans?” Eye, vol. 10, no. 2, pp. 233–238, 1996. View at Scopus
  79. R. O'Connor, E. E. Birch, S. Anderson, and H. Draper, “The functional significance of stereopsis,” Investigative Ophthalmology & Visual Science, vol. 51, no. 4, pp. 2019–2023. View at Publisher · View at Google Scholar
  80. J. J. Castro, J. R. Jiménez, E. Hita, and C. Ortiz, “Influence of interocular differences in the Strehl ratio on binocular summation,” Ophthalmic and Physiological Optics, vol. 29, no. 3, pp. 370–374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. R. Jiménez, J. J. Castro, R. Jiménez, and E. Hita, “Interocular differences in higher-order aberrations on binocular visual performance,” Optometry and Vision Science, vol. 85, no. 3, pp. 174–179, 2008.
  82. J. R. Jiménez, J. J. Castro, E. Hita, and R. G. Anera, “Upper disparity limit after LASIK,” Journal of the Optical Society of America. A, vol. 25, no. 6, pp. 1227–1231, 2008. View at Publisher · View at Google Scholar
  83. E. J. Fernández, P. M. Prieto, and P. Artal, “Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations,” Journal of the Optical Society of America A, vol. 27, no. 11, pp. A48–A55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Julesz, Foundations of Ciclopean Perception, The University of Chicago Press, 1971.
  85. J. V. Lovasik and M. Szymkiw, “Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis,” Investigative Ophthalmology & Visual Science, vol. 26, no. 5, pp. 741–750, 1985. View at Scopus
  86. P. P. Schmidt, “Sensitivity of random dot stereoacuity and Snellen acuity to optical blur,” Optometry and Vision Science, vol. 71, no. 7, pp. 466–471, 1994. View at Scopus
  87. C. Schor and T. Heckmann, “Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion,” Vision Research, vol. 29, no. 7, pp. 837–847, 1989. View at Scopus
  88. L. K. Cormack, S. B. Stevenson, and D. D. Landers, “Interactions of spatial frequency and unequal monocular contrasts in stereopsis,” Perception, vol. 26, no. 9, pp. 1121–1136, 1997. View at Scopus
  89. D. L. Halpern and R. R. Blake, “How contrast affects stereoacuity,” Perception, vol. 17, no. 4, pp. 483–495, 1988. View at Scopus
  90. G. Legge and Y. Gu, “Stereopsis and contrast,” Vision Research, vol. 29, no. 8, pp. 989–1004, 1989.
  91. C. Wood, “Stereopsis with spatially degraded images,” Investigative Ophthalmology & Visual Science, vol. 3, no. 3, pp. 337–340, 1983.
  92. T. Geib and C. Baumann, “Effect of luminance and contrast on stereoscopic acuity,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 228, no. 4, pp. 310–315, 1990. View at Publisher · View at Google Scholar
  93. C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Optics Letters, vol. 36, no. 24, pp. 4779–47781, 2011. View at Publisher · View at Google Scholar
  94. C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Optics Letters, vol. 35, no. 2, pp. 196–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal adaptive optics visual simulator: application to testing and design of ophthalmic optical elements,” Optics Express, vol. 15, no. 24, pp. 16177–16188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. P. A. Piers, E. J. Fenandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Investigative Ophthalmology & Visual Science, vol. 45, no. 12, pp. 4601–4610, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” Journal of Cataract and Refractive Surgery, vol. 33, no. 10, pp. 1721–1726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Research, vol. 48, no. 17, pp. 1804–1811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” Journal of Cataract and Refractive Surgery, vol. 35, no. 11, pp. 1885–1892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” Journal of Cataract and Refractive Surgery, vol. 35, no. 7, pp. 1229–1233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Legras, Y. Benard, and H. Rouger, “Through-focus visual performance measurements and predictions with multifocal contact lenses,” Vision Research, vol. 50, no. 12, pp. 1185–1193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. L. Lundström, S. Manzanera, P. M. Prieto et al., “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Optics Express, vol. 15, no. 20, pp. 12654–12661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” Journal of Refractive Surgery, vol. 16, no. 5, pp. S554–S559, 2000. View at Scopus
  104. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” Journal of the Optical Society of America A, vol. 19, no. 2, pp. 266–275, 2002. View at Scopus
  105. K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” Journal of Refractive Surgery, vol. 23, no. 9, pp. 953–959, 2007. View at Scopus
  106. E. Dalimier and C. Dainty, “Use of a customized vision model to analyze the effects of higher-order ocular aberrations and neural filtering on contrast threshold performance,” Journal of the Optical Society of America A, vol. 25, no. 8, pp. 2078–2087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” Journal of Modern Optics, vol. 55, no. 4-5, pp. 791–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” Journal of Vision, vol. 8, no. 13, article 1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. D. A. Atchison, H. Guo, W. N. Charman, and S. W. Fisher, “Blur limits for defocus, astigmatism and trefoil,” Vision Research, vol. 49, no. 19, pp. 2393–2403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic and Physiological Optics, vol. 29, no. 3, pp. 300–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” Journal of Vision, vol. 9, no. 2, pp. 1–16, 2009. View at Publisher · View at Google Scholar
  112. J. Li, Y. Xiong, N. Wang et al., “Effects of spherical aberration on visual acuity at different contrasts,” Journal of Cataract & Refractive Surgery, vol. 35, no. 8, pp. 1389–1395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Li, Y. Xiong, J. Li et al., “Effects of monochromatic aberration on visual acuity using adaptive optics,” Optometry and Vision Science, vol. 86, no. 7, pp. 868–874, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. G. M. Pérez, S. Manzanera, and P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” Journal of Vision, vol. 9, no. 3, pp. 1–10, 2009.
  115. H. Rouger, Y. Benard, and R. Legras, “Effect of monochromatic induced aberrations on visual performance measured by adaptive optics technology,” Journal of Refractive Surgery, vol. 26, no. 8, pp. 578–587, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Optics Express, vol. 18, no. 2, pp. 1637–1648, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. H. Guo and D. A. Atchison, “Subjective blur limits for cylinder,” Optometry and Vision Science, vol. 87, no. 8, pp. E549–E559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. P. Gupta, H. Guo, D. A. Atchison, and A. J. Zele, “Effect of optical aberrations on the color appearance of small defocused lights,” Journal of the Optical Society of America A, vol. 27, no. 5, pp. 960–967, 2010. View at Scopus
  119. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator,” Journal of Refractive Surgery, vol. 26, no. 1, pp. 52–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Research, vol. 50, no. 19, pp. 2008–2014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same pigment,” Journal of Vision, vol. 5, no. 5, pp. 444–454, 2005. View at Publisher · View at Google Scholar
  122. N. M. Putnam, H. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” Journal of Vision, vol. 5, no. 7, pp. 632–639, 2005. View at Publisher · View at Google Scholar
  123. W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Investigative Ophthalmology & Visual Science, vol. 47, no. 9, pp. 4160–4167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” Journal of Vision, vol. 8, no. 14, article 14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nature Neuroscience, vol. 12, no. 8, pp. 967–969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. E. Dalimier and C. Dainty, “Role of ocular aberrations in photopic spatial summation in the fovea,” Optics Letters, vol. 35, no. 4, pp. 589–591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Investigative Ophthalmology & Visual Science, vol. 51, no. 12, pp. 6858–6867, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. S. B. Stevenson, A. Roorda, and G. Kumar, “Eye tracking with the adaptive optics scanning laser ophthalmoscope,” in Proceedings of the Symposium on Eye-Tracking Research and Applications (ETRA '10), pp. 195–198, ACM, Austin, Tex, USA, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” Journal of Refractive Surgery, vol. 21, no. 5, pp. S575–S580, 2005. View at Scopus
  130. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Optics Express, vol. 18, no. 17, pp. 17841–17858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” Journal of Vision, vol. 11, no. 7, 2011. View at Publisher · View at Google Scholar
  132. K. M. Hampson, “Adaptive optics and vision,” Journal of Modern Optics, vol. 55, no. 21, pp. 3425–3467, 2008. View at Publisher · View at Google Scholar