About this Journal Submit a Manuscript Table of Contents
ISRN Condensed Matter Physics
Volume 2012 (2012), Article ID 140842, 7 pages
http://dx.doi.org/10.5402/2012/140842
Research Article

Fullerene Nanotubes Fabricated with Light Irradiation as a Critical Influence Factor

1Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
2School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China

Received 3 August 2012; Accepted 21 August 2012

Academic Editors: V. Kochereshko and S. Krukowski

Copyright © 2012 Yongtao Qu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature, vol. 318, no. 6042, pp. 162–163, 1985. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Wang, B. Liu, D. Liu et al., “Synthesis of thin, rectangular C60 nanorods using m-xylene as a shape controller,” Advanced Materials, vol. 18, no. 14, pp. 1883–1888, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Liu, Y. Li, L. Jiang et al., “Imaging as-grown [60] fullerene nanotubes by template technique,” Journal of the American Chemical Society, vol. 124, no. 45, pp. 13370–13371, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. G. Guo, C. J. Li, L. J. Wan et al., “Well-defined fullerene nanowire arrays,” Advanced Functional Materials, vol. 13, no. 8, pp. 626–630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Miyazawa, Y. Kuwasaki, A. Obayashi, and M. Kuwabara, “C60 nanowhiskers formed by the liquid-liquid interfacial precipitation method,” Journal of Materials Research, vol. 17, no. 1, pp. 83–88, 2002. View at Scopus
  6. K. Ogawa, T. Kato, A. Ikegami et al., “Electrical properties of field-effect transistors based on C60 nanowhiskers,” Applied Physics Letters, vol. 88, no. 11, Article ID 112109, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. R. Somani, S. P. Somani, and M. Umeno, “Toward organic thick film solar cells: three dimensional bulk heterojunction organic thick film solar cell using fullerene single crystal nanorods,” Applied Physics Letters, vol. 91, no. 17, Article ID 173503, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Miyazawa, “Synthesis and properties of fullerene nanowhiskers and fullerene nanotubes,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 1, pp. 41–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Zhang, K. Jiao, G. Piao, S. Liu, and S. Li, “Voltammetric study of fullerene C60 and fullerene C60 nanotubes with sandwich method,” Synthetic Metals, vol. 159, no. 5-6, pp. 419–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Zhang, Y. Qu, G. Piao, J. Zhao, and K. Jiao, “Reduced working electrode based on fullerene C60 nanotubes@DNA: characterization and application,” Materials Science and Engineering B, vol. 175, no. 2, pp. 159–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. X. Ji, J. S. Hu, Q. X. Tang et al., “Controllable preparation of submicrometer single-crystal C60 rods and tubes trough concentration depletion at the surfaces of seeds,” Journal of Physical Chemistry C, vol. 111, no. 28, pp. 10498–10502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Miyazawa, A. Obayashi, and M. Kuwabara, “C60 nanowhiskers in a mixture of lead zirconate titanate sol-C60 toluene solution,” Journal of the American Ceramic Society, vol. 84, no. 3–12, pp. 3037–3039, 2001. View at Scopus
  13. J. Y. Hu, N. N. Niu, G. Z. Piao, et al., “Phase transitions in single crystal tubes formed from C60 molecules under high pressure,” Carbon, vol. 50, no. 15, pp. 5458–5462, 2012.
  14. K. Miyazawa, J. I. Minato, T. Yoshii, M. Fujino, and T. Suga, “Structural characterization of the fullerene nanotubes prepared by the liquid-liquid interfacial precipitation method,” Journal of Materials Research, vol. 20, no. 3, pp. 688–695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Miyazawa, K. Hamamoto, S. Nagata, and T. Suga, “Structural investigation of the C60/C70whiskers fabricated by forming liquid-liquid interfaces of toluene with dissolved C60/C70 and isopropyl alcohol,” Journal of Materials Research, vol. 18, no. 5, pp. 1096–1103, 2003. View at Scopus
  16. G. Li, P. Liu, Z. Han et al., “A novel approach to fabrication of fullerene C60 nanotubes: using C60-pyridine colloid as a precursor,” Materials Letters, vol. 64, no. 3, pp. 483–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, “Solid C60: a new form of carbon,” Nature, vol. 347, no. 6291, pp. 354–358, 1990. View at Publisher · View at Google Scholar · View at Scopus
  18. J. I. Minato, K. Miyazawa, and T. Suga, “Morphology of C60 nanotubes fabricated by the liquid-liquid interfacial precipitation method,” Science and Technology of Advanced Materials, vol. 6, no. 3-4, pp. 272–277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. X. Cheng, Y. Fang, Q. J. Huang, Y. J. Yan, and X. Y. Li, “Blue-green photoluminescence from pyridine-C60 adduct,” Chemical Physics Letters, vol. 330, no. 3-4, pp. 262–266, 2000. View at Scopus
  20. M. Tachibana, K. Kobayashi, T. Uchida, K. Kojima, M. Tanimura, and K. Miyazawa, “Photo-assisted growth and polymerization of C60 “nano” whiskers,” Chemical Physics Letters, vol. 374, no. 3-4, pp. 279–285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Qu, S. Liang, K. Zou et al., “Effect of solvent type on the formation of tubular fullerene nanofibers,” Materials Letters, vol. 65, no. 3, pp. 562–564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Lakowicz, Principle of Fluorescence Spectroscopy, Kluwer Academic/Plenum, New York, NY, USA, 2nd edition, 1999.
  23. H. Imahori, K. Hagiwara, T. Akiyama, S. Taniguchi, T. Okada, and Y. Sakata, “Synthesis and photophysical property of porphyrin-linked fullerene,” Chemistry Letters, vol. 24, pp. 265–266, 1995.
  24. D. Kuciauskas, S. Lin, G. R. Seely et al., “Energy and photoinduced electron transfer in porphyrin-fullerene dyads,” Journal of Physical Chemistry, vol. 100, no. 39, pp. 15926–15932, 1996. View at Scopus
  25. E. F. Sheka, “Donor-acceptor interaction and fullerene C60 dimerization,” Chemical Physics Letters, vol. 438, no. 1–3, pp. 119–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Świetlik, P. Byszewski, and E. Kowalska, “Interactions of C60 with organic molecules in solvate crystals studied by infrared spectroscopy,” Chemical Physics Letters, vol. 254, no. 1-2, pp. 73–78, 1996. View at Scopus
  27. R. G. Alargova, S. Deguchi, and K. Tsujii, “Stable colloidal dispersions of fullerenes in polar organic solvents,” Journal of the American Chemical Society, vol. 123, no. 43, pp. 10460–10467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. K. S. Schmitz, An Introduction to Dynamic Light Scattering by Macromolecules, Academic Press, San Diego, Calif, USA, 1990.
  29. R. Pecora, Dynamic Light Scattering, Plenum Press, New York, NY, USA, 1985.
  30. A. Mrzei, A. Mertelj, A. Omerzu, M. Copic, and D. Mihailovic, “Investigation of encapsulation and solvatochromism of fullerenes in binary solvent mixtures,” Journal of Physical Chemistry B, vol. 103, no. 51, pp. 11256–11260, 1999. View at Scopus
  31. G. V. Andrievsky, V. K. Klochkov, A. B. Bordyuh, and G. I. Dovbeshko, “Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy,” Chemical Physics Letters, vol. 364, no. 1-2, pp. 8–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. C. L. Ringor and K. Miyazawa, “Synthesis of C60 nanotubes by liquid-liquid interfacial precipitation method: influence of solvent ratio, growth temperature, and light illumination,” Diamond and Related Materials, vol. 17, no. 4-5, pp. 529–534, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Nath, H. Pal, D. K. Palit, A. V. Sapre, and J. P. Mittal, “Aggregation of fullerene, C60, in benzonitrile,” Journal of Physical Chemistry B, vol. 102, no. 50, pp. 10158–10164, 1998. View at Scopus
  34. A. D. Bokare and A. Patnaik, “C60 aggregate structure and geometry in nonpolar o-xylene,” Journal of Physical Chemistry B, vol. 109, no. 1, pp. 87–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Mayers and Y. N. Xia, “Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds,” Advanced Materials, vol. 14, pp. 279–282, 2002.
  36. G. C. Krueger and C. W. Miller, “A study in the mechanics of crystal growth from a supersaturated solution,” The Journal of Chemical Physics, vol. 21, no. 11, pp. 2018–2023, 1953. View at Scopus
  37. G. Li, Z. Han, G. Piao, J. Zhao, S. Li, and G. Liu, “To distinguish fullerene C60 nanotubes and C60 nanowhiskers using Raman spectroscopy,” Materials Science and Engineering B, vol. 163, no. 3, pp. 161–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Kobayashi, M. Tachibana, and K. Kojima, “Photo-assisted growth of C60 nanowhiskers from solution,” Journal of Crystal Growth, vol. 274, no. 3-4, pp. 617–621, 2005. View at Publisher · View at Google Scholar · View at Scopus