Abstract

Suppose that ๐ป is a real Hilbert space and ๐น,๐พโˆถ๐ปโ†’๐ป are bounded monotone maps with ๐ท(๐พ)=๐ท(๐น)=๐ป. Let ๐‘ขโˆ— denote a solution of the Hammerstein equation ๐‘ข+๐พ๐น๐‘ข=0. An explicit iteration process is shown to converge strongly to ๐‘ขโˆ—. No invertibility or continuity assumption is imposed on ๐พ and the operator ๐น is not restricted to be angle-bounded. Our result is a significant improvement on the Galerkin method of Brรฉzis and Browder.

1. Introduction

Let ๐‘‹ be a real normed linear space with dual ๐‘‹โˆ—. For ๐‘ž>1, we denote by ๐ฝ๐‘ž the generalized duality mapping from ๐‘‹ to 2๐‘‹โˆ— defined by๐ฝ๐‘ž๎€ฝ๐‘“(๐‘ฅ)โˆถ=โˆ—โˆˆ๐‘‹โˆ—โˆถโŸจ๐‘ฅ,๐‘“โˆ—โŸฉ=โ€–๐‘ฅโ€–โ‹…โ€–๐‘“โˆ—โ€–,โ€–๐‘“โˆ—โ€–=โ€–๐‘ฅโ€–๐‘žโˆ’1๎€พ,(1.1) where โŸจโ‹…,โ‹…โŸฉ denotes the generalized duality pairing. ๐ฝ2 is denoted by ๐ฝ. If ๐‘‹โˆ— is strictly convex, then ๐ฝ๐‘ž is single-valued. A map ๐บ with domain ๐ท(๐บ) in a normed linear space ๐‘‹ is said to be strongly accretive if there exists a constant ๐‘˜>0 such that for every ๐‘ฅ,๐‘ฆโˆˆ๐ท(๐บ), there exists ๐‘—๐‘ž(๐‘ฅโˆ’๐‘ฆ)โˆˆ๐ฝ๐‘ž(๐‘ฅโˆ’๐‘ฆ) such that๎ซ๐บ๐‘ฅโˆ’๐บ๐‘ฆ,๐‘—๐‘ž๎ฌ(๐‘ฅโˆ’๐‘ฆ)โ‰ฅ๐‘˜โ€–๐‘ฅโˆ’๐‘ฆโ€–๐‘ž.(1.2) If ๐‘˜=0, ๐บ is said to be accretive. If ๐‘‹ is a Hilbert space, accretive operators are called monotone. The accretive mappings were introduced independently in 1967 by Browder [1] and Kato [2]. Interest in such mappings stems mainly from their firm connection with equations of evolution. It is known (see, e.g., Zeidler [3]) that many physically significant problems can be modelled by initial-value problems of the form๐‘ฅ๎…ž(๐‘ก)+๐ด๐‘ฅ(๐‘ก)=0,๐‘ฅ(0)=๐‘ฅ0,(1.3) where ๐ด is an accretive operator in an appropriate Banach space. Typical examples where such evolution equations occur can be found in the heat, wave, or Schrรถdinger equations. If in (1.3), ๐‘ฅ(๐‘ก) is independent of ๐‘ก, then (1.3) reduces to๐ด๐‘ข=0,(1.4) whose solutions correspond to the equilibrium points of the system (1.3). Consequently, considerable research efforts have been devoted, especially within the past 30 years or so, to methods of finding approximate solutions (when they exist) of (1.4). An early fundamental result in the theory of accretive operators, due to Browder [1], states that the initial value problem (1.3) is solvable if ๐ด is locally Lipschitzian and accretive on ๐‘‹. Utilizing the existence result for (1.3), Browder [1] proved that if ๐ด is locally Lipschitzian and accretive on ๐‘‹, then ๐ด is ๐‘š-accretive, that is, ๐‘…(๐ผ+๐ด)=๐‘‹, where ๐‘…(๐ผ+๐ด) denotes the range of (๐ผ+๐ด). Clearly, a consequence of this is that the equation๐‘ข+๐ด๐‘ข=0(1.5) has a solution. One important generalization of (1.5) is the so-called equation of Hammerstein type (see, e.g., Hammerstein [4]), where a nonlinear integral equation of Hammerstein type is one of the form:๎€œ๐‘ข(๐‘ฅ)+ฮฉ๐œ…(๐‘ฅ,๐‘ฆ)๐‘“(๐‘ฆ,๐‘ข(๐‘ฆ))๐‘‘๐‘ฆ=โ„Ž(๐‘ฅ),(1.6) where ๐‘‘๐‘ฆ is a ๐œŽ-finite measure on the measure space ฮฉ; the real kernel ๐œ… is defined on ฮฉร—ฮฉ, ๐‘“ is a real-valued function defined on ฮฉร—โ„ and is, in general, nonlinear and โ„Ž is a given function on ฮฉ. If we now define an operator ๐พ by๎€œ๐พ๐‘ฃ(๐‘ฅ)โˆถ=ฮฉ๐œ…(๐‘ฅ,๐‘ฆ)๐‘ฃ(๐‘ฆ)๐‘‘๐‘ฆ,๐‘ฅโˆˆฮฉ,(1.7) and the so-called superposition or Nemytskii operator by ๐น๐‘ข(๐‘ฆ)โˆถ=๐‘“(๐‘ฆ,๐‘ข(๐‘ฆ)) then, the integral equation (1.6) can be put in operator theoretic form as follows:๐‘ข+๐พ๐น๐‘ข=0,(1.8) where, without loss of generality, we have taken โ„Žโ‰ก0.

Interest in (1.8) stems mainly from the fact that several problems that arise in differential equations, for instance, elliptic boundary value problems whose linear parts possess Greens functions can, as a rule, be transformed into the form (1.8) (see e.g., Pascali and Sburlan [5], Chapter IV). Equations of Hammerstein type play a crucial role in the theory of optimal control systems and in automation and network theory (see, e.g., Dolezal [6]).

Several existence and uniqueness theorems have been proved for equations of the Hammerstein type (see e.g., Brรฉzis and Browder [7โ€“9], Browder [1], Browder et al. [10], Browder and Gupta [11], Cydotchepanovich [12], and De Figueiredo and Gupta [13]). For the iterative approximation of solutions of (1.4) and (1.5), the monotonicity/accretivity of ๐ด is crucial. The Mann iteration scheme (see, e.g., Mann [14]) has successfully been employed (see, e.g., the recent monographs of Berinde [15] and Chidume [16]). The recurrence formulas used involved ๐พโˆ’1 which is also assumed to be strongly monotone, and this, apart from limiting the class of mappings to which such iterative schemes are applicable, is also not convenient in applications. Part of the difficulty is the fact that the composition of two monotone operators need not be monotone. In the special case in which the operators are defined on subsets ๐ท of ๐‘‹ which are compact (or more generally, angle-bounded see e.g., Pascali and Sburlan [5] for definition), Brรฉzis and Browder [7] have proved the strong convergence of a suitably defined Galerkin approximation to a solution of (1.8) (see also Brรฉzis and Browder [9]).

It is our purpose in this paper to prove that an explicit coupled iteration process recently introduced by Chidume and Zegeye [17] which does not involve ๐พโˆ’1 which is also required to be monotone converges strongly to a solution of (1.8) when ๐พ and ๐น are bounded and monotone. Our new method of proof is also of independent interest.

2. Preliminaries

In the sequel, we will need the followings results.

Lemma 2.1 (see Xu [18]). Let {๐‘Ž๐‘›} be a sequence of nonnegative real numbers satisfying the following relations:๐‘Ž๐‘›+1โ‰ค๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘Ž๐‘›+๐›ผ๐‘›๐œŽ๐‘›+๐›พ๐‘›,๐‘›โ‰ฅ0,(2.1) where (i){๐›ผ๐‘›}โŠ‚(0,1), โˆ‘๐›ผ๐‘›=โˆž; (ii)limsup๐œŽ๐‘›โ‰ค0; (iii)๐›พ๐‘›โ‰ฅ0, (๐‘›โ‰ฅ0), โˆ‘๐›พ๐‘›<โˆž. Then, ๐‘Ž๐‘›โ†’0 as ๐‘›โ†’โˆž.

Lemma 2.2 (see Chidume and Djitte, [19, Lemmaโ€‰โ€‰2.5]). Let ๐ป be a real Hilbert space and ๐ดโˆถ๐ปโ†’๐ป be a map with ๐ท(๐ด)=๐ป. Suppose that ๐ด is ๐‘š-accretive, that is, (i) for all๐‘ข,๐‘ฃโˆˆ๐ป, โŸจ๐ด๐‘ขโˆ’๐ด๐‘ฃ,๐‘ขโˆ’๐‘ฃโŸฉโ‰ฅ0; (ii)๐‘…(๐ผ+๐‘ 0๐ด)=๐ป for some ๐‘ 0>0. Then ๐ด satisfies the range condition, that is, ๐‘…(๐ผ+๐‘ ๐ด)=๐ป for all ๐‘ >0.

We now prove the following result.

Lemma 2.3. Let ๐ป be a real Hilbert space and ๐น,๐พโˆถ๐ปโ†’๐ป be maps with ๐ท(๐น)=๐ท(๐พ)=๐ป. Let ๐ธ=๐ปร—๐ป and ๐‘‡โˆถ๐ธโ†’๐ธ be the map defined by: ๐‘‡๐‘ค=(๐น๐‘ขโˆ’๐‘ฃ,๐พ๐‘ฃ+๐‘ข),โˆ€๐‘ค=(๐‘ข,๐‘ฃ)โˆˆ๐ธ.(2.2) Assume that ๐น and ๐พ are monotones and satisfy the range condition. Then, ๐‘‡ is monotone and also satisfies the range condition.

Proof. On ๐ธ we have the natural norm โ€–โ‹…โ€–๐ธ and natural inner product โŸจโ‹…,โ‹…โŸฉ๐ธ given by: โ€–๐‘คโ€–๐ธ=๎€ทโ€–๐‘ขโ€–2๐ป+โ€–๐‘ฃโ€–2๐ป๎€ธ1/2,for๐‘ค=(๐‘ข,๐‘ฃ)โˆˆ๐ธ,โŸจ๐‘ค1,๐‘ค2โŸฉ๐ธ=โŸจ๐‘ข1,๐‘ข2โŸฉ๐ป+โŸจ๐‘ฃ1,๐‘ฃ2โŸฉ๐ป,for๐‘ค1=๎€ท๐‘ข1,๐‘ฃ1๎€ธ,๐‘ค2=๎€ท๐‘ข2,๐‘ฃ2๎€ธโˆˆ๐ธ.(2.3)Step 1. We prove that ๐‘‡ is monotone. Let ๐‘ค1=(๐‘ข1,๐‘ฃ1), ๐‘ค2=(๐‘ข2,๐‘ฃ2)โˆˆ๐ธ. We have ๐‘‡๐‘ค1=(๐น๐‘ข1โˆ’๐‘ฃ1,๐พ๐‘ฃ1+๐‘ข1) and ๐‘‡๐‘ค2=(๐น๐‘ข2โˆ’๐‘ฃ2,๐พ๐‘ฃ2+๐‘ข2). So, ๐‘‡๐‘ค1โˆ’๐‘‡๐‘ค2=(๐น๐‘ข1โˆ’๐น๐‘ข2+๐‘ฃ2โˆ’๐‘ฃ1,๐พ๐‘ฃ1โˆ’๐พ๐‘ฃ2+๐‘ข1โˆ’๐‘ข2). Therefore, using the fact that ๐น and ๐พ are monotone, we obtain,โŸจ๐‘‡๐‘ค1โˆ’๐‘‡๐‘ค2,๐‘ค1โˆ’๐‘ค2โŸฉ๐ธ=โŸจ๐น๐‘ข1โˆ’๐น๐‘ข2+๐‘ฃ2โˆ’๐‘ฃ1,๐‘ข1โˆ’๐‘ข2โŸฉ๐ป+โŸจ๐พ๐‘ฃ1โˆ’๐พ๐‘ฃ2+u1โˆ’๐‘ข2,๐‘ฃ1โˆ’๐‘ฃ2โŸฉ๐ป=โŸจ๐น๐‘ข1โˆ’๐น๐‘ข2,๐‘ข1โˆ’๐‘ข2โŸฉ๐ป+โŸจ๐พ๐‘ฃ1โˆ’๐พ๐‘ฃ2,๐‘ฃ1โˆ’๐‘ฃ2โŸฉ๐ปโ‰ฅ0.(2.4) So, ๐‘‡ is monotone.Step 2. We show that โ„›(๐ผ๐ธ+๐‘Ÿ๐‘‡)=๐ธ for all ๐‘Ÿ, 0<๐‘Ÿ<1. In fact let ๐‘Ÿ0 such that 0<๐‘Ÿ0<1. Since ๐น and ๐พ are monotone and satisfy the range condition, then it is known that (๐ผ+๐‘Ÿ0๐น) and (๐ผ+๐‘Ÿ0๐พ) are bijective and moreover, the resolvent ๐ฝ๐น๐‘Ÿ0โˆถ=(๐ผ+๐‘Ÿ0๐น)โˆ’1 of ๐น and the resolvent ๐ฝ๐พ๐‘Ÿ0โˆถ=(๐ผ+๐‘Ÿ0๐พ)โˆ’1 of ๐พ are nonexpansive.
Let โ„Ž=(โ„Ž1,โ„Ž2)โˆˆ๐ธ. Define ๐บโˆถ๐ธโ†’๐ธ by๎€ท๐ฝ๐บ๐‘ค=๐น๐‘Ÿ0๎€ทโ„Ž1+๐‘Ÿ0๐‘ฃ๎€ธ,๐ฝ๐พ๐‘Ÿ0๎€ทโ„Ž2โˆ’๐‘Ÿ0๐‘ข๎€ธ๎€ธ,โˆ€๐‘ค=(๐‘ข,๐‘ฃ)โˆˆ๐ธ.(2.5) Using the fact that ๐ฝ๐น๐‘Ÿ0 and ๐ฝ๐พ๐‘Ÿ0 are nonexpansive, we have, โ€–โ€–๐บ๐‘ค1โˆ’๐บ๐‘ค2โ€–โ€–๐ธโ‰ค๐‘Ÿ0โ€–โ€–๐‘ค1โˆ’๐‘ค2โ€–โ€–๐ธ,โˆ€๐‘ค1,๐‘ค2โˆˆ๐ธ.(2.6) Therefore ๐บ is a contraction. So, by the Banach fixed point theorem, ๐บ has a unique fixed point ๐‘คโˆ—=(๐‘ขโˆ—,๐‘ฃโˆ—)โˆˆ๐ธ, that is ๐บ๐‘คโˆ—=๐‘คโˆ— or equivalently, ๐‘ขโˆ—=๐ฝ๐น๐‘Ÿ0๎€ทโ„Ž1+๐‘Ÿ0๐‘ฃโˆ—๎€ธ,๐‘ฃโˆ—=๐ฝ๐พ๐‘Ÿ0๎€ทโ„Ž2โˆ’๐‘Ÿ0๐‘ขโˆ—๎€ธ.(2.7) These imply (๐ผ๐ธ+๐‘Ÿ0๐‘‡)๐‘คโˆ—=โ„Ž. Therefore, โ„›(๐ผ๐ธ+๐‘Ÿ0๐‘‡)=๐ธ.
By Lemma 2.2, it follows that ๐‘‡ satisfies the range condition. This completes the proof.

Theorem 2.4 (see Reich [20]). Let ๐ป be a real Hilbert space. Let ๐ดโˆถ๐ปโ†’๐ป be monotone with ๐ท(๐ด)=๐ป and suppose that ๐ด satisfies the range condition: โ„›(๐ผ+๐‘Ÿ๐ด)=๐ปfor all ๐‘Ÿ>0. Let ๐ฝ๐‘ก๐‘ฅโˆถ=(๐ผ+๐‘ก๐ด)โˆ’1๐‘ฅ, ๐‘ก>0 be the resolvent of ๐ด, and assume that ๐ดโˆ’1(0) is nonempty. Then for each ๐‘ฅโˆˆ๐ป, lim๐‘กโ†’โˆž๐ฝ๐‘ก๐‘ฅโˆˆ๐ดโˆ’1(0).

3. Main Results

Let ๐ป be a real Hilbert space and ๐น,๐พโˆถ๐ปโ†’๐ป be maps with ๐ท(๐พ)=๐ท(๐น)=๐ป such that the following conditions hold:(i)๐น is bounded and monotone, that is, โŸจ๐น๐‘ข1โˆ’๐น๐‘ข2,๐‘ข1โˆ’๐‘ข2โŸฉโ‰ฅ0,โˆ€๐‘ข1,๐‘ข2โˆˆ๐ป,(3.1)(ii)๐พ is bounded and monotone, that is, โŸจ๐พ๐‘ข1โˆ’๐พ๐‘ข2,๐‘ข1โˆ’๐‘ข2โŸฉโ‰ฅ0,โˆ€๐‘ข1,๐‘ข2โˆˆ๐ป,(3.2)(iii)๐น and K satisfy the range condition.

With these assumptions, we prove the following theorem.

Theorem 3.1. Let ๐ป be a real Hilbert space. Let {๐‘ข๐‘›} and {๐‘ฃ๐‘›} be sequences in ๐ป defined iteratively from arbitrary points ๐‘ข1,๐‘ฃ1โˆˆ๐ป as follows: ๐‘ข๐‘›+1=๐‘ข๐‘›โˆ’๐œ†๐‘›๎€ท๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›๎€ธโˆ’๐œ†๐‘›๐œƒ๐‘›๎€ท๐‘ข๐‘›โˆ’๐‘ข1๎€ธ๐‘ฃ,๐‘›โ‰ฅ1,๐‘›+1=๐‘ฃ๐‘›โˆ’๐œ†๐‘›๎€ท๐พ๐‘ฃ๐‘›+๐‘ข๐‘›๎€ธโˆ’๐œ†๐‘›๐œƒ๐‘›๎€ท๐‘ฃ๐‘›โˆ’๐‘ฃ1๎€ธ,๐‘›โ‰ฅ1,(3.3) where {๐œ†๐‘›} and {๐œƒ๐‘›} are sequences in (0,1) satisfying the following conditions:(1)lim๐œƒ๐‘›=0,(2)โˆ‘โˆž๐‘›=1๐œ†๐‘›๐œƒ๐‘›=โˆž, ๐œ†๐‘›=๐‘œ(๐œƒ๐‘›),(3)lim๐‘›โ†’โˆž((๐œƒ๐‘›โˆ’1/๐œƒ๐‘›)โˆ’1)/๐œ†๐‘›๐œƒ๐‘›=0. Suppose that ๐‘ข+๐พ๐น๐‘ข=0 has a solution in ๐ป. Then, there exists a constant ๐‘‘0>0 such that if ๐œ†๐‘›โ‰ค๐‘‘0๐œƒ๐‘› for all ๐‘›โ‰ฅ๐‘›0 for some ๐‘›0โ‰ฅ1, then the sequence {๐‘ข๐‘›} converges to ๐‘ขโˆ—, a solution of ๐‘ข+๐พ๐น๐‘ข=0.

Proof. Let ๐ธโˆถ=๐ปร—๐ป with the norm โ€–๐‘งโ€–๐ธ=(โ€–๐‘ขโ€–2๐ป+โ€–๐‘ฃโ€–2๐ป)1/2, where ๐‘ง=(๐‘ข,๐‘ฃ). Define the sequence {๐‘ค๐‘›} in ๐ธ by: ๐‘ค๐‘›โˆถ=(๐‘ข๐‘›,๐‘ฃ๐‘›). Let ๐‘ขโˆ—โˆˆ๐ป be a solution of ๐‘ข+๐พ๐น๐‘ข=0, ๐‘ฃโˆ—โˆถ=๐น๐‘ขโˆ— and ๐‘คโˆ—โˆถ=(๐‘ขโˆ—,๐‘ฃโˆ—). We observe that ๐‘ขโˆ—=โˆ’๐พ๐‘ฃโˆ—. It suffices to show that {๐‘ค๐‘›} converges to ๐‘คโˆ— in ๐ธ.
For this, let ๐‘›0โˆˆโ„•, there exists ๐‘Ÿ>0 sufficiently large such that ๐‘ค1โˆˆ๐ต(๐‘คโˆ—,๐‘Ÿ/2), ๐‘ค๐‘›0โˆˆ๐ต(๐‘คโˆ—,๐‘Ÿ), where ๐ต(๐‘คโˆ—,๐‘Ÿ) denotes the ball of center ๐‘คโˆ— and radius ๐‘Ÿ. Define ๐ตโˆถ=๐ต(๐‘คโˆ—,๐‘Ÿ). Since ๐น and ๐พ are bounded, we set ๐‘€1โˆถ=sup{โ€–๐น๐‘ฅโˆ’๐‘ฆโ€–2๐ป+๐‘Ÿ2โˆถ(๐‘ฅ,๐‘ฆ)โˆˆ๐ต}<โˆž and ๐‘€2โˆถ=sup{โ€–๐พ๐‘ฆ+๐‘ฅโ€–๐ป+๐‘Ÿ2โˆถ(๐‘ฅ,๐‘ฆ)โˆˆ๐ต}<โˆž. Let ๐‘€โˆถ=๐‘€1+๐‘€2. We split the proof in three steps.
Step 1. We first prove that the sequence {๐‘ค๐‘›} is bounded in ๐ธ. Indeed, it suffices to show that ๐‘ค๐‘› is in ๐ต for all ๐‘›โ‰ฅ๐‘›0. The proof is by induction. By construction, ๐‘ค๐‘›0โˆˆ๐ต. Suppose that ๐‘ค๐‘›โˆˆ๐ต for ๐‘›โ‰ฅ๐‘›0. We prove that ๐‘ค๐‘›+1โˆˆ๐ต. Assume for contradiction that ๐‘ค๐‘›+1โˆ‰๐ต. Then, we have โ€–๐‘ค๐‘›+1โˆ’๐‘คโˆ—โ€–๐ธ>๐‘Ÿ. We compute as follows: โ€–โ€–๐‘ค๐‘›+1โˆ’๐‘คโˆ—โ€–โ€–2=โ€–โ€–๐‘ข๐‘›+1โˆ’๐‘ขโˆ—โ€–โ€–2๐ป+โ€–โ€–๐‘ฃ๐‘›+1โˆ’๐‘ฃโˆ—โ€–โ€–2๐ป.(3.4) We have โ€–โ€–๐‘ข๐‘›+1โˆ’๐‘ขโˆ—โ€–โ€–2๐ป=โ€–โ€–๐‘ข๐‘›โˆ’๐‘ขโˆ—โˆ’๐œ†๐‘›๎€ท๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›๎€ธโˆ’๐œ†๐‘›๐œƒ๐‘›๎€ท๐‘ข๐‘›โˆ’๐‘ข1๎€ธโ€–โ€–2=โ€–โ€–๐‘ข๐‘›โˆ’๐‘ขโˆ—โ€–โ€–2๐ปโˆ’2๐œ†๐‘›๎ซ๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›+๐œƒ๐‘›๎€ท๐‘ข๐‘›โˆ’๐‘ข1๎€ธ,๐‘ข๐‘›โˆ’๐‘ขโˆ—๎ฌ+๐œ†2๐‘›โ€–โ€–๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›+๐œƒ๐‘›(๐‘ข๐‘›โˆ’๐‘ข1)โ€–โ€–2๐ปโ‰คโ€–โ€–๐‘ข๐‘›โˆ’๐‘ขโˆ—โ€–โ€–2๐ปโˆ’2๐œ†๐‘›โŸจ๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›+๐œƒ๐‘›๎€ท๐‘ข๐‘›โˆ’๐‘ข1๎€ธ,๐‘ข๐‘›โˆ’๐‘ขโˆ—โŸฉ+๐œ†2๐‘›๐‘€1.(3.5) Observing that ๎ซ๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›+๐œƒ๐‘›๎€ท๐‘ข๐‘›โˆ’๐‘ข1๎€ธ,๐‘ข๐‘›โˆ’๐‘ขโˆ—๎ฌ=โŸจ๐น๐‘ข๐‘›โˆ’๐น๐‘ขโˆ—,๐‘ข๐‘›โˆ’๐‘ขโˆ—โŸฉโˆ’โŸจ๐‘ฃ๐‘›โˆ’๐‘ฃโˆ—,๐‘ข๐‘›โˆ’๐‘ขโˆ—โŸฉ+๐œƒ๐‘›โ€–โ€–๐‘ข๐‘›โˆ’๐‘ขโˆ—โ€–โ€–2๐ป+๐œƒ๐‘›โŸจ๐‘ขโˆ—โˆ’๐‘ข1,๐‘ข๐‘›โˆ’๐‘ขโˆ—โŸฉ,(3.6) and using (3.1), we obtain the following estimate: โ€–โ€–๐‘ข๐‘›+1โˆ’๐‘ขโˆ—โ€–โ€–2๐ปโ‰ค๎€บ1โˆ’2๐œ†๐‘›๐œƒ๐‘›๎€ปโ€–โ€–๐‘ข๐‘›โˆ’๐‘ขโˆ—โ€–โ€–2๐ป+๐œ†2๐‘›๐‘€1+2๐œ†๐‘›โŸจ๐‘ฃ๐‘›โˆ’๐‘ฃโˆ—,๐‘ข๐‘›โˆ’๐‘ขโˆ—โŸฉโˆ’2๐œ†๐‘›๐œƒ๐‘›โŸจ๐‘ขโˆ—โˆ’๐‘ข1,๐‘ข๐‘›โˆ’๐‘ขโˆ—โŸฉ.(3.7) Following the same argument, we also obtain โ€–โ€–๐‘ฃ๐‘›+1โˆ’๐‘ฃโˆ—โ€–โ€–2๐ปโ‰ค๎€บ1โˆ’2๐œ†๐‘›๐œƒ๐‘›๎€ปโ€–โ€–๐‘ฃnโˆ’๐‘ฃโˆ—โ€–โ€–2๐ป+๐œ†2๐‘›๐‘€2โˆ’2๐œ†๐‘›โŸจ๐‘ข๐‘›โˆ’๐‘ขโˆ—,๐‘ฃ๐‘›โˆ’๐‘ฃโˆ—โŸฉโˆ’2๐œ†๐‘›๐œƒ๐‘›โŸจ๐‘ฃโˆ—โˆ’๐‘ฃ1,๐‘ฃ๐‘›โˆ’๐‘ฃโˆ—โŸฉ.(3.8) Thus, we obtain โ€–โ€–๐‘ค๐‘›+1โˆ’๐‘คโˆ—โ€–โ€–2๐ธโ‰ค๎€บ1โˆ’2๐œ†๐‘›๐œƒ๐‘›๎€ปโ€–โ€–๐‘ค๐‘›โˆ’๐‘คโˆ—โ€–โ€–2๐ธ+๐‘€๐œ†2๐‘›โˆ’2๐œ†๐‘›๐œƒ๐‘›โŸจ๐‘ขโˆ—โˆ’๐‘ข1,๐‘ข๐‘›โˆ’๐‘ขโˆ—โŸฉโˆ’2๐œ†๐‘›๐œƒ๐‘›โŸจ๐‘ฃโˆ—โˆ’๐‘ฃ1,๐‘ฃ๐‘›โˆ’๐‘ฃโˆ—โŸฉ.(3.9) Using โ€–โ€–๐‘ข0โ‰คโˆ—โˆ’๐‘ข1+๎€ท๐‘ข๐‘›โˆ’๐‘ขโˆ—๎€ธโ€–โ€–2๐ป=โ€–โ€–๐‘ขโˆ—โˆ’๐‘ข1โ€–โ€–2๐ป+2โŸจ๐‘ขโˆ—โˆ’๐‘ข1,๐‘ข๐‘›โˆ’๐‘ขโˆ—โ€–โ€–๐‘ขโŸฉ+๐‘›โˆ’๐‘ขโˆ—โ€–โ€–2๐ป,โ€–โ€–๐‘ฃ0โ‰คโˆ—โˆ’๐‘ฃ1+๎€ท๐‘ฃ๐‘›โˆ’๐‘ฃโˆ—๎€ธโ€–โ€–2๐ป=โ€–โ€–๐‘ฃโˆ—โˆ’๐‘ฃ1โ€–โ€–2๐ป+2โŸจ๐‘ฃโˆ—โˆ’๐‘ฃ1,๐‘ฃ๐‘›โˆ’๐‘ฃโˆ—โ€–โ€–๐‘ฃโŸฉ+๐‘›โˆ’๐‘ฃโˆ—โ€–โ€–2๐ป,(3.10) we have โˆ’2โŸจ๐‘ขโˆ—โˆ’๐‘ข1,๐‘ข๐‘›โˆ’๐‘ขโˆ—โ€–โ€–๐‘ขโŸฉโ‰คโˆ—โˆ’๐‘ข1โ€–โ€–2๐ป+โ€–โ€–๐‘ข๐‘›โˆ’๐‘ขโˆ—โ€–โ€–2๐ป,โˆ’2โŸจ๐‘ฃโˆ—โˆ’๐‘ฃ1,๐‘ฃ๐‘›โˆ’๐‘ฃโˆ—โ€–โ€–๐‘ฃโŸฉโ‰คโˆ—โˆ’๐‘ฃ1โ€–โ€–2๐ป+โ€–โ€–๐‘ฃ๐‘›โˆ’๐‘ฃโˆ—โ€–โ€–2๐ป.(3.11) Therefore โ€–โ€–๐‘ค๐‘›+1โˆ’๐‘คโˆ—โ€–โ€–2๐ธโ‰ค๎€บ1โˆ’2๐œ†๐‘›๐œƒ๐‘›๎€ปโ€–โ€–๐‘ค๐‘›โˆ’๐‘คโˆ—โ€–โ€–2๐ธ+๐‘€๐œ†2๐‘›+๐œ†๐‘›๐œƒ๐‘›โ€–โ€–๐‘ค๐‘›โˆ’๐‘คโˆ—โ€–โ€–2๐ธ+๐œ†๐‘›๐œƒ๐‘›โ€–โ€–๐‘คโˆ—โˆ’๐‘ค1โ€–โ€–2๐ธ.(3.12) So we obtain the following estimate: โ€–โ€–๐‘ค๐‘›+1โˆ’๐‘คโˆ—โ€–โ€–2๐ธโ‰ค๎€บ1โˆ’๐œ†๐‘›๐œƒ๐‘›๎€ปโ€–โ€–๐‘ค๐‘›โˆ’๐‘คโˆ—โ€–โ€–2๐ธ+๐œ†๐‘›๐œƒ๐‘›โ€–โ€–๐‘คโˆ—โˆ’๐‘ค1โ€–โ€–2๐ธ+๐‘€๐œ†2๐‘›.(3.13) Let ๐‘‘0=๐‘Ÿ2/4๐‘€. Then using the induction assumptions, the fact that ๐‘ค1โˆˆ๐ต(๐‘คโˆ—,๐‘Ÿ/2) and ๐œ†๐‘›โ‰ค๐‘‘0๐œƒ๐‘›, we obtain โ€–โ€–๐‘ค๐‘›+1โˆ’๐‘คโˆ—โ€–โ€–2๐ปโ‰ค๎‚ธ๐œ†1โˆ’๐‘›๐œƒ๐‘›4๎‚น๐‘Ÿ2<๐‘Ÿ2,(3.14) a contradiction. Therefore, ๐‘ค๐‘›+1โˆˆ๐ต. Thus by induction, {๐‘ค๐‘›} is bounded and so are {๐‘ข๐‘›} and {๐‘ฃ๐‘›}.Step 2. We show that there exists a unique sequence ๐‘ง๐‘›=(๐‘ฅ๐‘›,๐‘ฆ๐‘›)โˆˆ๐ธ such that ๐œƒ๐‘›๎€ท๐‘ฅ๐‘›โˆ’๐‘ข1๎€ธ+๐น๐‘ฅ๐‘›โˆ’๐‘ฆ๐‘›๐œƒ=0,(3.15)๐‘›๎€ท๐‘ฆ๐‘›โˆ’๐‘ฃ1๎€ธ+๐พ๐‘ฆ๐‘›+๐‘ฅ๐‘›=0,(3.16) and ๐‘ฅ๐‘›โ†’๐‘ฅโˆ—, ๐‘ฆ๐‘›โ†’๐‘ฆโˆ—, with ๐‘ฅโˆ—+๐พ๐น๐‘ฅโˆ—=0 and ๐‘ฆโˆ—=๐น๐‘ฅโˆ—.
In fact, let ๐‘‡โˆถ๐ธโ†’๐ธ be defined by ๐‘‡(๐‘ข,๐‘ฃ)=(๐น๐‘ขโˆ’๐‘ฃ,๐พ๐‘ฃ+๐‘ข),for all (๐‘ข,๐‘ฃ)โˆˆ๐ธ. Using the fact that ๐น and ๐พ are monotone and satisfy the range condition, it follows from Lemma 2.3 that ๐‘‡ is monotone and also satisfies the range condition.
Applying Theorem 2.4, with ๐‘ก=1/๐œƒ๐‘› and ๐‘ฅ=(๐‘ข1,๐‘ฃ1), we obtain that lim๐‘กโ†’+โˆž๐ฝ๐‘ก๐‘ฅโˆˆ๐‘‡โˆ’1(0) implies that lim๐‘›โ†’+โˆž๎‚ต1๐ผ+๐œƒ๐‘›๐‘‡๎‚ถโˆ’1๎€ท๐‘ข1,๐‘ฃ1๎€ธโˆˆ๐‘‡โˆ’1(0).(3.17) Set ๐‘ง๐‘›=(๐‘ฅ๐‘›,๐‘ฆ๐‘›)โˆถ=(๐ผ+(1/๐œƒ๐‘›)๐‘‡)โˆ’1(๐‘ข1,๐‘ฃ1). Then (๐ผ+(1/๐œƒ๐‘›)๐‘‡)(๐‘ฅ๐‘›,๐‘ฆ๐‘›)=(๐‘ข1,๐‘ฃ1), for all ๐‘›โ‰ฅ1. So we have, ๐‘ฅ๐‘›+1๐œƒ๐‘›๎€ท๐น๐‘ฅ๐‘›โˆ’๐‘ฆ๐‘›๎€ธ=๐‘ข1,๐‘ฆ๐‘›+1๐œƒ๐‘›๎€ท๐พ๐‘ฆ๐‘›+๐‘ฅ๐‘›๎€ธ=๐‘ฃ1.(3.18) Therefore, ๐œƒ๐‘›๎€ท๐‘ฅ๐‘›โˆ’๐‘ข1๎€ธ+๐น๐‘ฅ๐‘›โˆ’๐‘ฆ๐‘›๐œƒ=0,๐‘›๎€ท๐‘ฆ๐‘›โˆ’๐‘ฃ1๎€ธ+๐พ๐‘ฅ๐‘›+๐‘ฅ๐‘›=0.(3.19) Since ๐‘‡ is monotone and satisfies the range condition, then it is known that (๐ผ+๐‘Ÿ๐‘‡) is bijective for every ๐‘Ÿ>0. So, the sequence {๐‘ง๐‘›} is unique. Using (3.17) and Theorem 2.4, we have, lim๐‘ง๐‘›โˆˆ๐‘‡โˆ’1(0). Let ๐‘ฅ๐‘›โ†’๐‘ฅโˆ— and ๐‘ฆ๐‘›โ†’๐‘ฆโˆ—. Then (๐‘ฅโˆ—,๐‘ฆโˆ—)โˆˆ๐‘‡โˆ’1(0). So, ๐‘‡(๐‘ฅโˆ—,๐‘ฆโˆ—)=0, that is, ๐น๐‘ฅโˆ—โˆ’๐‘ฆโˆ—=0,๐พ๐‘ฆโˆ—+๐‘ฅโˆ—=0.(3.20) Therefore, ๐‘ฆโˆ—=๐น๐‘ฅโˆ— and ๐‘ฅโˆ—+๐พ๐น๐‘ฅโˆ—=0.
Step 3. We show that {๐‘ค๐‘›}โ†’(๐‘ขโˆ—,๐‘ฃโˆ—), where ๐‘ขโˆ—+๐พ๐น๐‘ขโˆ—=0 and ๐‘ฃโˆ—=๐น๐‘ขโˆ—.Claim 1. ๐‘ค๐‘›+1โˆ’๐‘ง๐‘›โ†’0 as ๐‘›โ†’โˆž. We compute as follows: โ€–โ€–๐‘ค๐‘›+1โˆ’๐‘ง๐‘›โ€–โ€–2๐ธ=โ€–โ€–๐‘ข๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–2๐ป+โ€–โ€–๐‘ฃ๐‘›+1โˆ’๐‘ฆ๐‘›โ€–โ€–2๐ป.(3.21) We have โ€–โ€–๐‘ข๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–2๐ป=โ€–โ€–๐‘ข๐‘›โˆ’๐‘ฅ๐‘›โˆ’๐œ†๐‘›๎€ท๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›+๐œƒ๐‘›๎€ท๐‘ข๐‘›โˆ’๐‘ข1โ€–โ€–๎€ธ๎€ธ2๐ป=โ€–โ€–๐‘ข๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–2๐ปโˆ’2๐œ†๐‘›๎ซ๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›+๐œƒ๐‘›๎€ท๐‘ข๐‘›โˆ’๐‘ข1๎€ธ,๐‘ข๐‘›โˆ’๐‘ฅ๐‘›๎ฌ+๐œ†2๐‘›โ€–โ€–๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›+๐œƒ๐‘›๎€ท๐‘ข๐‘›โˆ’๐‘ข1๎€ธโ€–โ€–2๐ป.(3.22) From the boundness of {๐‘ข๐‘›}, {๐‘ฃ๐‘›}, and ๐น, there exists ๐‘€3>0 such that โ€–๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›+๐œƒ๐‘›(๐‘ข๐‘›โˆ’๐‘ข1)โ€–2๐ปโ‰ค๐‘€3. Using (3.15) and the fact that ๐น is monotone, we obtain โ€–โ€–๐‘ข๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–2๐ปโ‰ค๎€ท1โˆ’๐œ†๐‘›๐œƒ๐‘›๎€ธโ€–โ€–๐‘ข๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–2๐ปโˆ’2๐œ†๐‘›โŸจ๐น๐‘ฅ๐‘›โˆ’๐‘ฃ๐‘›,๐‘ข๐‘›โˆ’๐‘ฅ๐‘›โŸฉโˆ’2๐œ†๐‘›โŸจ๐‘ฆ๐‘›โˆ’๐น๐‘ฅ๐‘›,๐‘ข๐‘›โˆ’๐‘ฅ๐‘›โŸฉ+๐‘€3๐œ†2๐‘›=๎€ท1โˆ’๐œ†๐‘›๐œƒ๐‘›๎€ธโ€–โ€–๐‘ข๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–2๐ปโˆ’2๐œ†๐‘›โŸจ๐‘ฆ๐‘›โˆ’๐‘ฃ๐‘›,๐‘ข๐‘›โˆ’๐‘ฅ๐‘›โŸฉ+๐‘€3๐œ†2๐‘›,(3.23) for some constant ๐‘€3>0. Using (3.16) and similar arguments, we obtain: โ€–โ€–๐‘ฃ๐‘›+1โˆ’๐‘ฃ๐‘›โ€–โ€–2๐ปโ‰ค๎€ท1โˆ’๐œ†๐‘›๐œƒ๐‘›๎€ธโ€–โ€–๐‘ฃ๐‘›โˆ’๐‘ฆ๐‘›โ€–โ€–2๐ปโˆ’2๐œ†๐‘›โŸจ๐พ๐‘ฆ๐‘›+๐‘ข๐‘›,๐‘ฃ๐‘›โˆ’๐‘ฆ๐‘›โŸฉ+2๐œ†๐‘›โŸจ๐‘ฅ๐‘›+๐พ๐‘ฆ๐‘›,๐‘ฃ๐‘›โˆ’๐‘ฆ๐‘›โŸฉ+๐‘€4๐œ†2๐‘›=๎€ท1โˆ’๐œ†๐‘›๐œƒ๐‘›๎€ธโ€–โ€–๐‘ฃ๐‘›โˆ’๐‘ฆ๐‘›โ€–โ€–2๐ป+2๐œ†๐‘›โŸจ๐‘ฅ๐‘›โˆ’๐‘ข๐‘›,๐‘ฃ๐‘›โˆ’๐‘ฆ๐‘›โŸฉ+๐‘€4๐œ†2๐‘›,(3.24) for some constant ๐‘€4>0. Therefore, we have the following estimate: โ€–โ€–๐‘ค๐‘›+1โˆ’z๐‘›โ€–โ€–2๐ธโ‰ค๎€ท1โˆ’๐œ†๐‘›๐œƒ๐‘›๎€ธโ€–โ€–๐‘ค๐‘›โˆ’๐‘ง๐‘›โ€–โ€–2๐ธ+๐‘€โ€ฒ๐œ†2๐‘›,where๐‘€โ€ฒ=๐‘€3+๐‘€4.(3.25) On the other hand, using the monotonicity of ๐น and ๐พ we have โ€–โ€–๐‘ง๐‘›โˆ’1โˆ’๐‘ง๐‘›โ€–โ€–2๐ธโ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’1โˆ’๐‘ฅ๐‘›+๐œƒ๐‘›โˆ’1๎€ท๐น๐‘ฅ๐‘›โˆ’1โˆ’๐‘ฆ๐‘›โˆ’1โˆ’๐น๐‘ฅ๐‘›+๐‘ฆ๐‘›๎€ธโ€–โ€–2๐ป+โ€–โ€–๐‘ฆ๐‘›โˆ’1โˆ’๐‘ฆ๐‘›+๐œƒ๐‘›โˆ’1๎€ท๐พ๐‘ฆ๐‘›โˆ’1+๐‘ฅ๐‘›โˆ’1โˆ’๐พ๐‘ฆ๐‘›โˆ’๐‘ฅ๐‘›๎€ธโ€–โ€–2๐ป.(3.26) Using (3.15) and (3.16), we observe that ๐‘ฅ๐‘›โˆ’1โˆ’๐‘ฅ๐‘›+1๐œƒ๐‘›๎€ท๐น๐‘ฅ๐‘›โˆ’1โˆ’๐‘ฆ๐‘›โˆ’1โˆ’๐น๐‘ฅ๐‘›+๐‘ฆ๐‘›๎€ธ=๐œƒ๐‘›โˆ’๐œƒ๐‘›โˆ’1๐œƒ๐‘›๎€ท๐‘ฅ๐‘›โˆ’1โˆ’๐‘ข1๎€ธ,๐‘ฆ๐‘›โˆ’1โˆ’๐‘ฆ๐‘›+1๐œƒ๐‘›๎€ท๐พ๐‘ฆ๐‘›โˆ’1+๐‘ฅ๐‘›โˆ’1โˆ’๐พ๐‘ฆ๐‘›โˆ’๐‘ฅ๐‘›๎€ธ=๐œƒ๐‘›โˆ’๐œƒ๐‘›โˆ’1๐œƒ๐‘›๎€ท๐‘ฆ๐‘›โˆ’1โˆ’๐‘ฃ1๎€ธ.(3.27) Therefore, โ€–โ€–๐‘ง๐‘›โˆ’1โˆ’๐‘ง๐‘›โ€–โ€–๐ธโ‰ค๐œƒnโˆ’1โˆ’๐œƒ๐‘›๐œƒ๐‘›โ€–โ€–๐‘ง๐‘›โˆ’1โˆ’๐‘ค1โ€–โ€–๐ธ.(3.28) Using (3.25) and the boundness of {๐‘ฅ๐‘›} and {๐‘ฆ๐‘›}, we obtain that there exists ๐ถ>0 such that: โ€–โ€–๐‘ค๐‘›+1โˆ’๐‘ง๐‘›โ€–โ€–2๐ธโ‰ค๎€ท1โˆ’๐œ†๐‘›๐œƒ๐‘›๎€ธโ€–โ€–๐‘ค๐‘›โˆ’๐‘ง๐‘›โˆ’1โ€–โ€–2๐ป๎‚ต๐œƒ+๐ถ๐‘›โˆ’1โˆ’๐œƒ๐‘›๐œƒ๐‘›๎‚ถ+๐‘€๎…ž๐œ†2๐‘›.(3.29) Thus, by Lemma 2.1, ๐‘ค๐‘›+1โˆ’๐‘ง๐‘›โ†’0. Since ๐‘ง๐‘›โ†’(๐‘ฅโˆ—,๐‘ฆโˆ—), we obtain that ๐‘ค๐‘›โ†’(๐‘ฅโˆ—,๐‘ฆโˆ—). But since ๐‘ค๐‘›=(๐‘ข๐‘›,๐‘ฃ๐‘›), this implies that ๐‘ข๐‘›โ†’๐‘ขโˆ— and ๐‘ฃ๐‘›โ†’๐‘ฃโˆ—. This completes the proof.

Corollary 3.2. Let ๐ป be a real Hilbert space and ๐น,๐พโˆถ๐ปโ†’๐ป be maps with ๐ท(๐พ)=๐ท(๐น)=๐ป such that the following conditions hold:(i)๐น and ๐พ are Lipschitz and monotone,(ii)๐น and ๐พ satisfy the range condition. Let {๐‘ข๐‘›} and {๐‘ฃ๐‘›} be sequences in ๐ป defined iteratively from arbitrary points ๐‘ข1,๐‘ฃ1โˆˆ๐ป as follows: ๐‘ข๐‘›+1=๐‘ข๐‘›โˆ’๐œ†๐‘›๎€ท๐น๐‘ข๐‘›โˆ’๐‘ฃ๐‘›๎€ธโˆ’๐œ†๐‘›๐œƒ๐‘›๎€ท๐‘ข๐‘›โˆ’๐‘ข1๎€ธ๐‘ฃ,๐‘›โ‰ฅ1,๐‘›+1=๐‘ฃ๐‘›โˆ’๐œ†๐‘›๎€ท๐พ๐‘ฃ๐‘›+๐‘ข๐‘›๎€ธโˆ’๐œ†๐‘›๐œƒ๐‘›๎€ท๐‘ฃ๐‘›โˆ’๐‘ฃ1๎€ธ,๐‘›โ‰ฅ1,(3.30) where {๐œ†๐‘›} and {๐œƒ๐‘›} are sequences in (0,1) satisfying the following conditions:(1)lim๐œƒ๐‘›=0,(2)โˆ‘โˆž๐‘›=1๐œ†๐‘›๐œƒ๐‘›=โˆž, ๐œ†๐‘›=๐‘œ(๐œƒ๐‘›),(3)lim๐‘›โ†’โˆž((๐œƒ๐‘›โˆ’1/๐œƒ๐‘›)โˆ’1)/๐œ†๐‘›๐œƒ๐‘›=0. Suppose that ๐‘ข+๐พ๐น๐‘ข=0 has a solution in ๐ป. Then, there exists a constant ๐‘‘0>0 such that if ๐œ†๐‘›โ‰ค๐‘‘0๐œƒ๐‘› for all ๐‘›โ‰ฅ๐‘›0 for some ๐‘›0โ‰ฅ1, then the sequence {๐‘ข๐‘›} converges to ๐‘ขโˆ—, a solution of ๐‘ข+๐พ๐น๐‘ข=0.

Let ๐‘‹ be a real Banach space with dual space ๐‘‹โˆ— and let ๐ดโˆถ๐‘‹โ†’๐‘‹โˆ— be a monotone linear operator. The mapping ๐ด is said to be angle-bounded with constant ๐›ผโ‰ฅ0 if||||(๐ด๐‘ฅ,๐‘ฆ)โˆ’(๐ด๐‘ฆ,๐‘ฅ)โ‰ค2๐›ผ(๐ด๐‘ฅ,๐‘ฅ)1/2(A๐‘ฆ,๐‘ฆ)1/2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ท(๐ด),(3.31) where (โ‹…,โ‹…) denotes the duality pairing between elements of ๐‘‹โˆ— and those of ๐‘‹. The class of angle-bounded operators is a subclass of the class of monotone operators. The angle-boundness of ๐ด with ๐›ผ=0 corresponds to the symmetry of ๐ด, that is,(๐ด๐‘ฅ,๐‘ฆ)=(๐ด๐‘ฆ,๐‘ฅ),โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ท(๐ด).(3.32) (See Pascali and Sburlan [5, Chapter IV, page 189]).

Let ๐ป be a separable real Hilbert space and ๐ถ be a closed subspace of ๐ป. For a given ๐‘“โˆˆ๐ถ, consider the Hammerstein equation:(๐ผ+๐พ๐น)๐‘ข=๐‘“,(3.33) and its ๐‘›th Galerkin approximation given by๎€ท๐ผ+๐พ๐‘›๐น๐‘›๎€ธ๐‘ข๐‘›=๐‘ƒโˆ—๐‘“,(3.34) where ๐พ๐‘›=๐‘ƒโˆ—๐‘›๐พ๐‘ƒ๐‘›โˆถ๐ปโ†’๐ถ๐‘› and ๐น๐‘›=๐‘ƒ๐‘›๐น๐‘ƒโˆ—๐‘›โˆถ๐ถ๐‘›โ†’๐ป, where the symbols have their usual meanings (see [5] for the meaning of the symbols). Under this setting, Brรฉzis and Browder (see [9]) proved the following approximation theorem.

Theorem BB. Let ๐ป be a separable real Hilbert space. Let ๐พโˆถ๐ปโ†’๐ถ be a bounded continuous monotone operator and ๐นโˆถ๐ถโ†’๐ป be an angle-bounded and weakly compact mapping. Then, for each ๐‘›โˆˆโ„•, the Galerkin approximation (3.34) admits a unique solution ๐‘ข๐‘› in ๐ถ๐‘› and {๐‘ข๐‘›} converges strongly in ๐ป to the unique solution ๐‘ขโˆˆ๐ถ of the (3.33).

Remark 3.3. Theorem BB is the special case of the actual theorem of Brรฉzis and Browder in which the Banach space is a separable real Hilbert space. The main theorem of Brรฉzis and Browder is proved in an arbitrary separable Banach space.

Remark 3.4. The class of mappings considered in our theorem (Theorem 3.1) is larger than that considered in Theorem BB. In particular, in Theorem BB, in addition to assuming that the operator ๐พ is bounded and monotone, the authors also required ๐พ to be continuous. Furthermore, the operator ๐น is restricted to the class of angle-bounded operators (a subclass of the monotone operators) and is also assumed to be weakly compact. In Theorem 3.1, the operators ๐พ and ๐น are only assumed to be bounded and monotone and satisfy the range condition. We remark that continuity of the monotone map ๐พ implies that ๐พ is ๐‘š-accretive (see Martin [21]) and it is known that ๐‘š-accretive implies range condition.

Remark 3.5. Theorem BB guarantees the existence of a sequence {๐‘ข๐‘›} which converges strongly to a solution of the Hammerstein equation (3.33). Our theorem provides an iterative sequence which converges strongly to a solution of (3.33).

Remark 3.6. Real sequences that satisfy the hypotheses of Theorem 3.1 are ๐œ†๐‘›=(๐‘›+1)โˆ’๐‘Ž and ๐œƒ๐‘›=(๐‘›+1)โˆ’๐‘ with 0<๐‘<๐‘Ž and ๐‘Ž+๐‘<1.

We verify that these choices satisfy, in particular, condition (3) of Theorem 3.1. In fact, using the fact that (1+๐‘ฅ)๐‘โ‰ค1+๐‘๐‘ฅ, for ๐‘ฅ>โˆ’1 and 0<๐‘<1, we have๐œƒ0โ‰ค๎€ท๎€ท๐‘›โˆ’1/๐œƒ๐‘›๎€ธ๎€ธโˆ’1๐œ†๐‘›๐œƒ๐‘›=๎‚ธ๎‚€11+๐‘›๎‚๐‘๎‚นโˆ’1โ‹…(๐‘›+1)๐‘Ž+๐‘โ‰ค๐‘โ‹…(๐‘›+1)๐‘Ž+๐‘๐‘›=๐‘โ‹…๐‘›+1๐‘›โ‹…1(๐‘›+1)1โˆ’(๐‘Ž+๐‘)โŸถ0,(3.35) as ๐‘›โ†’โˆž.