About this Journal Submit a Manuscript Table of Contents
ISRN Artificial Intelligence
Volume 2012 (2012), Article ID 178658, 6 pages
http://dx.doi.org/10.5402/2012/178658
Research Article

Simulated Annealing with Previous Solutions Applied to DNA Sequence Alignment

Facultad de Sistemas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, 25280 México, Mexico

Received 1 July 2012; Accepted 25 July 2012

Academic Editors: M. F. Abbod, M. Arif, and P. Trunfio

Copyright © 2012 Ernesto Liñán-García and Lorena Marcela Gallegos-Araiza. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Karp, “Mapping the genome: some combinatorial problems arising in molecular biology,” in Proceedings of the 25th Annual ACM Symposium on the Theory of Computing, pp. 278–285, May 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. E. S. Lander, R. Langridge, and D. M. Saccocio, “Mapping and interpreting biological information,” Communications of the ACM, vol. 34, no. 11, pp. 33–39, 1991.
  3. L. Wang and T. Jiang, “On the complexity of multiple sequence alignment,” Journal of Computational Biology, vol. 1, no. 4, pp. 337–348, 1994. View at Scopus
  4. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover Publications, Mineola, NY, USA, 1998.
  5. J. Setubal and J. Meidanis, Introduction to Computational Molecular Biology, PWS Publishing, 1997.
  6. O. Gotoh, “An improved algorithm for matching biological sequences,” Journal of Molecular Biology, vol. 162, no. 3, pp. 705–708, 1982. View at Scopus
  7. S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970. View at Scopus
  8. I. Ö. Bucak and V. Uslan, “An analysis of sequence alignment: Heuristic algorithms,” in Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'10), pp. 1824–1827, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Chen, L. Zou, and J. Chen, “An efficient ant colony algorithm for multiple sequences alignment,” in Proceedings of the 3rd International Conference on Natural Computation (ICNC '07), pp. 208–212, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Kim, S. Pramanik, and M. J. Chung, “Multiple sequence alignment using simulated annealing,” Computer Applications in the Biosciences, vol. 10, no. 4, pp. 419–426, 1994. View at Scopus
  11. S.-M. Chen and C.-H. Lin, “Multiple DNA sequence alignment based on genetic simulated annealing techniques,” International Journal of Information and Management Sciences, vol. 18, no. 2, pp. 97–111, 2007. View at Scopus
  12. C. Notredame, D. G. Higgins, and J. Heringa, “T-coffee: a novel method for fast and accurate multiple sequence alignment,” Journal of Molecular Biology, vol. 302, no. 1, pp. 205–217, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Cerny, “Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm,” Journal of Optimization Theory and Applications, vol. 45, no. 1, pp. 41–51, 1985. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. View at Scopus
  15. E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: a Stochastic Approach to Combinatorial Optimization And Neural Computing, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Chichester, UK, 1989.
  16. L. Ingber, “Simulated annealing: practice versus theory,” Mathematical and Computer Modelling, vol. 18, no. 11, pp. 29–57, 1993. View at Scopus
  17. U. Kjærulff, “Optimal decomposition of probabilistic networks by simulated annealing,” Statistics and Computing, vol. 2, no. 1, pp. 7–17, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. P. J. Van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications, Kluwer Academic Publishers, 1987.
  19. J. Frausto-Solis, E. F. Román, D. Romero, X. Soberon, and E. Liñán-García, “Analytically tuned simulated annealing applied to the protein folding problem,” Lecture Notes in Computer Science, vol. 4488, no. 2, pp. 370–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Frausto-Solis, X. Soberon-Mainero, and E. Liñán-García, “MultiQuenching annealing algorithm for protein folding problem,” Lecture Notes in Computer Science, vol. 5845, pp. 578–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Frausto-Solís, H. Sanvicente-Sánchez, and F. Imperial-Valenzuela, “Andymark: an analytical method to establish dynamically the length of the Markov chain in simulated annealing for the satisfiability problem,” Lecture Notes in Computer Science, vol. 4247, pp. 269–276, 2006. View at Scopus
  22. H. Sanvicente-Sánchez and J. Frausto-Solís, “A method to establish the cooling scheme in simulated annealing like algorithms,” Lecture Notes in Computer Science, vol. 3045, pp. 755–763, 2004. View at Scopus