About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2012 (2012), Article ID 208903, 6 pages
http://dx.doi.org/10.5402/2012/208903
Review Article

Immune Escape Mechanisms in Diffuse Large B-Cell Lymphoma

1Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 6, Olomouc 77520, Czech Republic
2Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic

Received 5 November 2012; Accepted 13 December 2012

Academic Editors: V. Boussiotis and H. Dong

Copyright © 2012 V. Procházka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Morton, S. S. Wang, S. S. Devesa, P. Hartge, D. D. Weisenburger, and M. S. Linet, “Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001,” Blood, vol. 107, no. 1, pp. 265–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Mounier, N. Heutte, C. Thieblemont, Groupe d'Etude des Lymphomes de l'Adulte (GELA), et al., “Ten-year relative survival and causes of death in elderly patients treated with R-CHOP or CHOP in the GELA LNH-985 trial,” Clinical Lymphoma Myeloma and Leukemia, vol. 12, no. 3, pp. 151–154, 2012. View at Publisher · View at Google Scholar
  3. T. Papajik, Z. Pikalova, L. Raida et al., “Rituximab does not adversely affect the stem cell mobilization and engraftment after high-dose therapy and autologous transplantation in patients with diffuse large B-cell lymphoma in first complete or partial remission,” Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic, vol. 153, no. 3, pp. 211–214, 2009. View at Scopus
  4. C. Galand, S. Donnou, T. J. Molina, W. H. Fridman, S. Fisson, and C. Sautès-Fridman, “Influence of tumor location on the composition of immune infiltrate and its impact on patient survival. Lessons from DCBCL and animal models,” Frontiers in Immunology, vol. 3, article 98, 2012.
  5. S. M. Lippman, C. M. Spier, T. P. Miller, D. J. Slymen, J. A. Rybski, and T. M. Grogan, “Tumor-infiltrating T-lymphocytes in B-cell diffuse large cell lymphoma related to disease course,” Modern Pathology, vol. 3, no. 3, pp. 361–367, 1990. View at Scopus
  6. D. Hasenclever and V. Diehl, “A prognostic score for advanced Hodgkin's disease. International Prognostic Factors Project on Advanced Hodgkin's Disease,” The New England Journal of Medicine, vol. 339, no. 21, pp. 1506–1514, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Cox, I. Nofroni, L. Ruco et al., “Low absolute lymphocyte count is a poor prognostic factor in diffuse-large-B-cell-lymphoma,” Leukemia and Lymphoma, vol. 49, no. 9, pp. 1745–1751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Aoki, T. Nishiyama, N. Imahashi, and K. Kitamura, “Lymphopenia following the completion of first-line therapy predicts early relapse in patients with diffuse large B cell lymphoma,” Annals of Hematology, vol. 91, no. 3, pp. 375–382, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. E. N. Rozali, S. V. Hato, B. W. Robinson, R. A. Lake, and W. J. Lesterhuis, “Programmed death ligand 2 in cancer-induced immune suppression,” Clinical and Developmental Immunology, vol. 2012, Article ID 656340, 8 pages, 2012. View at Publisher · View at Google Scholar
  10. B. R. Blazar, A. L. Mellor, D. H. Munn, G. Zhou, and Z. C. Ding, “Chemotherapy rescues tumor-driven aberrant CD4+ T-cell differentiation and restores an activated polyfunctional helper phenotype,” Blood, vol. 115, no. 12, pp. 2397–2406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. M. Rimsza, R. A. Roberts, T. P. Miller et al., “Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: a follow-up study from the Leukemia and Lymphoma Molecular Profiling Project,” Blood, vol. 103, no. 11, pp. 4251–4258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. M. Rimsza, R. A. Roberts, T. M. Grogan et al., “Loss of major histocompatibility class II expression in non-immune-privileged site diffuse large B-cell lymphoma is highly coordinated and not due to chromosomal deletions,” Blood, vol. 107, no. 3, pp. 1101–1107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Alizadeh, M. B. Eisen, R. E. Davis, et al., “Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,” Nature, vol. 403, no. 6769, pp. 503–511, 2000. View at Publisher · View at Google Scholar
  14. A. Rosenwald, G. Wright, W. C. Chan, et al., “The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma,” The New England Journal Medicine, vol. 346, no. 25, pp. 1937–1947, 2002. View at Publisher · View at Google Scholar
  15. K. A. Cycon, L. M. Rimsza, and S. P. Murphy, “Alterations in CIITA constitute a common mechanism accounting for downregulation of MHC class II expression in diffuse large B-cell lymphoma (DLBCL),” Experimental Hematology, vol. 37, no. 2, pp. 184.e2–194.e2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. P. Y. Ting and J. Trowsdale, “Genetic control of MHC class II expression,” Cell, vol. 109, no. 2, pp. S21–S33, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Reith, S. L. Gut-Landmann, and J. M. Waldburger, “Regulation of MHC class II gene expression by the class II transactivator,” Nature Reviews Immunology, vol. 5, no. 10, pp. 793–806, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Steidl, S. P. Shah, B. W. Woolcock et al., “MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers,” Nature, vol. 471, no. 7338, pp. 377–383, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. H. Steidl and R. Gascoyne, “The molecular pathogenesis of primary mediastinal large B-cell,” Blood, vol. 118, no. 10, pp. 2659–2669, 2011. View at Publisher · View at Google Scholar
  20. M. R. Green, S. Monti, S. J. Rodig et al., “Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma,” Blood, vol. 116, no. 17, pp. 3268–3277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Z. Yang, A. J. Novak, M. J. Stenson, T. E. Witzig, and S. M. Ansell, “Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma,” Blood, vol. 107, no. 9, pp. 3639–3646, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Han, J. Wu, L. Bi, et al., “Malignant B cells induce the conversion of CD4+CD25- T cells to regulatory T cells in B-cell non-Hodgkin lymphoma,” PLoS ONE, vol. 6, no. 12, Article ID e28649, 2011.
  23. A. Tzankov, C. Meier, P. Hirschmann, P. Went, S. A. Pileri, and S. Dirnhofer, “Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma,” Haematologica, vol. 93, no. 2, pp. 193–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. R. Lee, E. K. Song, K. Y. Jang et al., “Prognostic impact of tumor infiltrating FOXP3 positive regulatory T cells in diffuse large B-cell lymphoma at diagnosis,” Leukemia and Lymphoma, vol. 49, no. 2, pp. 247–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Wang and X. Ke, “The four type sof Tregs in malignit lymphomas,” Journal of Hematology & Oncology, vol. 4, article 50, 2011. View at Publisher · View at Google Scholar
  26. M. Ishida, Y. Iwai, Y. Tanaka et al., “Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues,” Immunology Letters, vol. 84, no. 1, pp. 57–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Wilcox, A. L. Feldman, D. A. Wada, et al., “B7-H1 (PD-L1, CD274) suppresses host imunity in T-cell lymfoproliferative disorders,” Blood, vol. 114, no. 10, pp. 2149–2158, 2012.
  28. A. Rosenwald, G. Wright, K. Leroy et al., “Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma,” Journal of Experimental Medicine, vol. 198, no. 6, pp. 851–862, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. B. G. Richendollar, B. Pohlman, P. Elson, and E. D. Hsi, “Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma,” Human Pathology, vol. 42, no. 4, pp. 552–557, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. R. A. Roberts, G. Wright, A. R. Rosenwald et al., “Loss of major histocompatibility class II gene and protein expression in primary mediastinal large B-cell lymphoma is highly coordinated and related to poor patient survival,” Blood, vol. 108, no. 1, pp. 311–318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. L. M. Rimsza, P. Farinha, D. A. Fuchs, H. Masoudi, J. M. Connors, and R. D. Gascoyne, “HLA-DR protein status predicts survival in patients with diffuse large B-cell lymphoma treated on the MACOP-B chemotherapy regimen,” Leukemia and Lymphoma, vol. 48, no. 3, pp. 542–546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Gallimore and A. Godkin, “Regulatory T cells and tumour immunity—observations in mice and men,” Immunology, vol. 123, no. 2, pp. 157–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Beyer and J. L. Schultze, “Regulatory T cells in cancer,” Blood, vol. 108, no. 3, pp. 804–811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Hasselblom, M. Sigurdadottir, U. Hansson, H. Nilsson-Ehle, B. Ridell, and P. O. Andersson, “The number of tumour-infiltrating TIA-1+ cytotoxic T cells but not FOXP3+ regulatory T cells predicts outcome in diffuse large B-cell lymphoma,” British Journal of Haematology, vol. 137, no. 4, pp. 364–373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Felcht, M. Heck, C. Weiss, et al., “Expression of the T-cell regulatory marker FOXP3 in primary cutaneous large B-cell lymphoma tumor cells,” British Journal of Dermatology, vol. 167, no. 2, pp. 348–358, 2012. View at Publisher · View at Google Scholar
  36. A. J. Currie, A. Prosser, A. McDonnell et al., “Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation,” The Journal of Immunology, vol. 183, no. 12, pp. 7898–7908, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. L. Topalian, C. G. Drake, and D. M. Pardoll, “Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity,” Current Opinon in Immunology, vol. 24, no. 2, pp. 207–212, 2012. View at Publisher · View at Google Scholar
  38. J. Li, M. Favata, J. A. Kelley et al., “INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support,” Neoplasia, vol. 12, no. 1, pp. 28–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. L. Topalian, F. S. Hodi, J. R. Brahmer, et al., “Safety, activity, and immune correlates of Anti-PD-1 antibody in cancer,” The New England Jornal of Medicine, vol. 366, pp. 2443–2454, 2012. View at Publisher · View at Google Scholar