About this Journal Submit a Manuscript Table of Contents
ISRN Thermodynamics
Volume 2012 (2012), Article ID 253972, 9 pages
http://dx.doi.org/10.5402/2012/253972
Research Article

Simulating Turbulent Buoyant Flow by a Simple LES-Based Thermal Lattice Boltzmann Model

1Research and Development Center, Wisco, Wuhan 430084, China
2State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

Received 14 December 2011; Accepted 30 January 2012

Academic Editors: P. Espeau, D. E. Khoshtariya, and P. Li

Copyright © 2012 Sheng Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Benzi, S. Succi, and M. Vergassola, “The lattice Boltzmann equation: theory and applications,” Physics Report, vol. 222, no. 3, pp. 145–197, 1992. View at Scopus
  2. S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annual Review of Fluid Mechanics, vol. 30, pp. 329–364, 1998. View at Scopus
  3. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, Oxford, UK, 2001.
  4. R. J. Goldstein, W. E. Ibele, S. V. Patankar et al., “Heat transfer—a review of 2001 literature,” International Journal of Heat and Mass Transfer, vol. 49, pp. 451–534, 2006.
  5. H. Chen, S. Kandasamy, S. Orszag, R. Shock, S. Succi, and V. Yakhot, “Extended Boltzmann kinetic equation for turbulent flows,” Science, vol. 301, no. 5633, pp. 633–636, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Qian, S. Succi, and S. Orszag, “Recent advances in lattice Boltzmann computing,” Annual Reviews of Computational Physics, vol. 3, pp. 195–242, 1995.
  7. G. Hazi, R. Imre, G. Mayer, and I. Farkas, “Lattice Boltzmann methods for two-phase flow modeling,” Annals of Nuclear Energy, vol. 29, no. 12, pp. 1421–1453, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Yu, R. Mei, L. S. Luo, and W. Shyy, “Viscous flow computations with the method of lattice Boltzmann equation,” Progress in Aerospace Sciences, vol. 39, no. 5, pp. 329–367, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, “Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics,” Physics of Fluids, vol. 6, no. 3, pp. 1285–1298, 1994. View at Scopus
  10. X. He, G. D. Doolen, and T. Clark, “Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier-Stokes equations,” Journal of Computational Physics, vol. 179, no. 2, pp. 439–451, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Y. Al-Jahmany, G. Brenner, and P. O. Brunn, “Comparative study of lattice-Boltzmann and finite volume methods for the simulation of laminar flow through a 4 : 1 planar contraction,” International Journal for Numerical Methods in Fluids, vol. 46, no. 9, pp. 903–920, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Al-Zoubi and G. Brenner, “Comparative study of thermal flows with different finite volume and lattice Boltzmann schemes,” International Journal of Modern Physics C, vol. 15, no. 2, pp. 307–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Seta, E. Takegoshi, and K. Okui, “Lattice Boltzmann simulation of natural convection in porous media,” Mathematics and Computers in Simulation, vol. 72, no. 2–6, pp. 195–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Chen, Z. H. Liu, Z. He, et al., “A new numerical approach for fire simulation,” International Journal of Modern Physics C, vol. 18, pp. 187–202, 2007.
  15. F. Massaioli, R. Benzi, and S. Succi, “Exponential tails in twodimensionnal Rayleigh-Benard convection,” Europhysics Letters, vol. 21, pp. 305–310, 1993.
  16. F. J. Alexander, S. Chen, and J. D. Sterling, “Lattice Boltzmann thermohydrodynamics,” Physical Review E, vol. 47, no. 4, pp. R2249–R2252, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Chen, H. Ohashi, and M. Akiyama, “Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations,” Physical Review E, vol. 50, no. 4, pp. 2776–2783, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. J. G. M. Eggels and J. A. Somers, “Numerical simulation of free convective flow using the lattice-Boltzmann scheme,” International Journal of Heat and Fluid Flow, vol. 16, no. 5, pp. 357–364, 1995. View at Scopus
  19. H. N. Dixit and V. Babu, “Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method,” International Journal of Heat and Mass Transfer, vol. 49, no. 3-4, pp. 727–739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Kuznik, J. Vareilles, G. Rusaouen, and G. Krauss, “A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity,” International Journal of Heat and Fluid Flow, vol. 28, no. 5, pp. 862–870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Chen, Z. Liu, C. Zhang et al., “A novel coupled lattice Boltzmann model for low Mach number combustion simulation,” Applied Mathematics and Computation, vol. 193, no. 1, pp. 266–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Pavlo, G. Vahala, L. Vahala, and M. Soe, “Linear stability analysis of thermo-lattice Boltzmann models,” Journal of Computational Physics, vol. 139, no. 1, pp. 79–91, 1998. View at Scopus
  23. X. Shan, “Simulation of Rayleigh-Bernard convection using a lattice Boltzmann method,” Physical Review E, vol. 55, no. 3, pp. 2780–2788, 1997. View at Scopus
  24. X. He, S. Chen, and G. D. Doolen, “A novel thermal model for the lattice Boltzmann method in incompressible limit,” Journal of Computational Physics, vol. 146, no. 1, pp. 282–300, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Gebhart, “Instability, transition, and turbulence in buoyancy-induced flows,” Annual Review of Fluid Mechanics, vol. 5, pp. 213–246, 1973.
  26. N. C. Markatos and K. A. Pericleous, “Laminar and turbulent natural convection in an enclosed cavity,” International Journal of Heat and Mass Transfer, vol. 27, no. 5, pp. 755–772, 1984. View at Scopus
  27. B. C. Shi and Z. L. Guo, “Thermal lattice BGK simulation of turbulent natural convection due to internal heat generation,” International Journal of Modern Physics B, vol. 9, no. 1-2, pp. 48–51, 2002.
  28. Y. Zhou, R. Zhang, I. Staroselsky, and H. Chen, “Numerical simulation of laminar and turbulent buoyancy-driven flows using a lattice Boltzmann based algorithm,” International Journal of Heat and Mass Transfer, vol. 47, no. 22, pp. 4869–4879, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Treeck, E. Rank, M. Krafczyk, J. Tolke, and B. Nachtwey, “Extension of a hybrid thermal LBE scheme for large-eddy simulations of turbulent convective flows,” Computers and Fluids, vol. 35, no. 8-9, pp. 863–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. H. J. Liu, C. Zou, B. C. Shi, Z. Tian, L. Zhang, and C. Zheng, “Thermal lattice-BGK model based on large-eddy simulation of turbulent natural convection due to internal heat generation,” International Journal of Heat and Mass Transfer, vol. 49, no. 23-24, pp. 4672–4680, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method,” Physical Review E, vol. 65, no. 4, Article ID 046308, pp. 1–6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Chen and M. Krafczyk, “Entropy generation in turbulent natural convection due to internal heat generation,” International Journal of Thermal Sciences, vol. 48, no. 10, pp. 1978–1987, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. G. J. F. van Heijst and H. J. H. Clercx, “Laboratory modeling of geophysical vortices,” Annual Review of Fluid Mechanics, vol. 41, pp. 143–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Chen, J. Tolke, and M. Krafczyk, “A new method for the numerical solution of vorticity-streamfunction formulations,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 3-4, pp. 367–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Chen, J. Tolke, S. Geller, and M. Krafczyk, “Lattice Boltzmann model for incompressible axisymmetric flows,” Physical Review E, vol. 78, no. 4, Article ID 046703, 8 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. B. C. Shi, N. He, and N. Wang, “A unified thermal lattice BGK model for boussinesq equations,” Progress in Computational Fluid Dynamics, vol. 5, no. 1-2, pp. 50–64, 2005. View at Scopus
  37. Y. Dong and P. Sagaut, “A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence,” Physics of Fluids, vol. 20, no. 3, Article ID 035105, 11 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Krafczyk, J. Tolke, and L. Luo, “Large-eddy simulations with a multiple-relaxation-time LBE model,” International Journal of Modern Physics B, vol. 17, no. 1-2, pp. 33–39, 2003. View at Scopus
  39. G. Barakos, E. Mitsoulis, and D. Assimacopoulos, “Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions,” International Journal for Numerical Methods in Fluids, vol. 18, no. 7, pp. 695–719, 1994. View at Scopus
  40. G. de Vahl Davis, “Natural convection of air in a square cavity: a bench mark numerical solution,” International Journal for Numerical Methods in Fluids, vol. 3, no. 3, pp. 249–264, 1983. View at Scopus
  41. P. Le Quere, “Accurate solutions to the square thermally driven cavity at high Rayleigh number,” Computers and Fluids, vol. 20, no. 1, pp. 29–41, 1991. View at Scopus
  42. T. J. Chung, Computational Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2002.