About this Journal Submit a Manuscript Table of Contents
ISRN Artificial Intelligence
Volume 2012 (2012), Article ID 309687, 8 pages
http://dx.doi.org/10.5402/2012/309687
Research Article

Control of Flexible Joint Manipulator via Reduced Rule-Based Fuzzy Control with Experimental Validation

1Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
2Department of Control Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
3Department of Mechatronics Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran

Received 5 August 2011; Accepted 20 September 2011

Academic Editor: L. Mikhailov

Copyright © 2012 Mojtaba Rostami Kandroodi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A novel structure of fuzzy logic controller is presented for trajectory tracking and vibration control of a flexible joint manipulator. The rule base of fuzzy controller is divided into two sections. Each section includes two variables. The variables of first section are the error of tip angular position and the error of deflection angle, while the variables of second section are derivatives of mentioned errors. Using these structures, it would be possible to reduce the number of rules. Advantages of proposed fuzzy logic are low computational complexity, high interpretability of rules, and convenience in fuzzy controller. Implementing of the fuzzy logic controller on Quanser flexible joint reveals efficiency of proposed controller. To show the efficiency of this method, the results are compared with LQR method. In this paper, experimental validation of proposed method is presented.