About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2012 (2012), Article ID 345684, 5 pages
Research Article

Study of Metal-1,10-Phenanthroline Complex Equilibria by Potentiometric Measurements

Department of Chemistry, Faculty of Arts and Sciences, Uludağ University, 16059 Bursa, Turkey

Received 30 August 2012; Accepted 9 October 2012

Academic Editors: B. K. Jena and S. Sforza

Copyright © 2012 Naciye Türkel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Özer, “Mixed ligand chelates of scandium(III) and yttrium(III) in aqueous solution,” Chimica Acta Turcica, vol. 13, pp. 253–270, 1985.
  2. G. A. Melson and R. W. Stotz, “The coordination chemistry of scandium,” Coordination Chemistry Reviews, vol. 7, no. 2, pp. 133–160, 1971. View at Scopus
  3. J. A. A. Mc Cleverty, Specialist Periodical Reports Inorganic Chemistry of Transition Elements, vol. 4, Library of Congress Catalog no.72-83458, The marketing officer, The Chemical Society Burlington House, London, UK, 1976.
  4. N. Türkel, “Stability of metal chelates of some hydroxamic acid ligands,” Journal of Chemical and Engineering Data, vol. 56, no. 5, pp. 2337–2342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Türkel, “Stability constants of lanthanide(III) chelates of 8-quinolinol-5-sulfonate,” Asian Journal of Chemistry, vol. 18, no. 3, pp. 1978–1986, 2006. View at Scopus
  6. N. Türkel and U. Özer, “Potentiometric investigations of some catechol derivatives of scandium,” Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, vol. 31, no. 3, pp. 213–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Türkel and U. Özer, “Salicylic acid derivatives form stable complexes with scandium(Ill) ion in aqueous solution,” Chemical and Pharmaceutical Bulletin, vol. 48, no. 6, pp. 870–872, 2000. View at Scopus
  8. Z. M. Wang, H. K. Lin, S. R. Zhu, T. F. Liu, and Y. T. Chen, “Spectroscopy, cytotoxicity and DNA-binding of the lanthanum(III) complex of an L-valine derivative of 1,10-phenanthroline,” Journal of Inorganic Biochemistry, vol. 89, no. 1-2, pp. 97–106, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Arora and K. Burman, “Lanthanide (III) metal complexes with nitrogen donor ligands—a review,” Reviews in Inorganic Chemistry, vol. 29, no. 2, pp. 83–101, 2009. View at Scopus
  10. R. N. Marques, C. B. Melios, N. C. S. Pereira et al., “Complexation of some trivalent lanthanides, scandium(III) and thorium(IV) by benzylidenepyruvates in aqueous solution,” Journal of Alloys and Compounds, vol. 249, no. 1, pp. 102–105, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Wilkinson, R. D. Gillard, and J. A. M. Cleverty, Comprehensive Coordination Chemistry, vol. 2, Pergamon, Oxford, UK, 1987.
  12. C. Bazzicalupi, A. Bencini, V. Fusi, C. Giorgi, P. Paoletti, and B. Valtancoli, “Lead complexation by novel phenanthroline-containing macrocycles,” Journal of the Chemical Society—Dalton Transactions, no. 3, pp. 393–399, 1999. View at Scopus
  13. P. G. Sammes and G. Yahioglu, “1,10-Phenanthroline: a versatile ligand,” Chemical Society Reviews, vol. 23, no. 5, pp. 327–334, 1994. View at Scopus
  14. C. E. A. Palmer, D. R. McMillin, C. Kirmaier, and D. Holten, “Flash photolysis and quenching studies of copper(I) systems in the presence of Lewis bases: inorganic exciplexes?” Inorganic Chemistry, vol. 26, no. 19, pp. 3167–3170, 1987. View at Scopus
  15. S. Sakaki, G. Koga, and K. Ohkubo, “Successful photocatalytic reduction of MV2+ with [Cu(NN) (PPh3)2]+ (NN = 2,9-dimethyl-1,10-phenanthroline or 4,4′,6,6′-tetramethyl-2,2′-bipyridine) upon near-UV-light irradiation and a novel solvent effect on its catalytic activity,” Inorganic Chemistry, vol. 25, no. 14, pp. 2330–2333, 1986. View at Scopus
  16. D. M. Walba, Q. Y. Zheng, and K. Schilling, “Experimental studies on the hook and ladder approach to molecular knots: synthesis of a topologically chiral cyclized hook and ladder,” Journal of American Chemical Society, vol. 114, pp. 6259–6260, 1992.
  17. S. S. Zhu and T. M. Swager, “Conducting polymetallorotaxanes: metal ion mediated enhancements in conductivity and charge localization,” Journal of the American Chemical Society, vol. 119, no. 51, pp. 12568–12577, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. D. J. Cárdenas, P. Gaviña, and J. P. Sauvage, “Construction of interlocking and threaded rings using two different transition metals as a templating and connecting centers: catenanes and rotaxanes incorporating Ru(terpy)2-units in their framework,” Journal of the American Chemical Society, vol. 119, no. 11, pp. 2656–2664, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Ziessel, A. Harriman, J. Suffert, M. T. Youinou, A. De Cian, and J. Fischer, “Copper(I) helicates containing bridging but nonchelating polypyridine fragments,” Angewandte Chemie, vol. 36, no. 22, pp. 2509–2511, 1997. View at Scopus
  20. C. O. Dietrich-Buchecker and J. P. Sauvage, “A Synthetic molecular trefoil knot,” Angewandte Chemie, vol. 28, pp. 189–192, 1989.
  21. F. Sallas, A. Marsura, V. Petot, I. Pintér, J. Kovács, and L. Jicsinszky, “Synthesis and study of new ß-Cyclodextrin ‘Dimers’having a metal coordination center and carboxamide or urea linkers,” Helvetica Chimica Acta, vol. 81, no. 4, pp. 632–645, 1998. View at Scopus
  22. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. von Zelewsky, “Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence,” Coordination Chemistry Reviews, vol. 84, pp. 85–277, 1988. View at Scopus
  23. R. E. Holmlin, E. D. A. Stemp, and J. K. Barton, “Ru(phen)2dppz2+ luminescence: dependence on DNA sequences and groove-binding agents,” Inorganic Chemistry, vol. 37, no. 1, pp. 29–34, 1998. View at Scopus
  24. R. B. Nair, E. S. Teng, S. L. Kirkland, and C. J. Murphy, “Synthesis and DNA-binding properties of [Ru(NH3)4dppz]2+,” Inorganic Chemistry, vol. 37, pp. 139–141, 1998.
  25. W. Jian-Zhong, L. Li, T. X. Zeng et al., “Synthesis, characterization and luminiscent DNA-binding study of a series of ruthenium complexes containing 2-arylimidazo[f]1,10-phenanthroline,” Polyhedron, vol. 16, no. 1, pp. 103–107, 1997. View at Scopus
  26. C. Hiort, P. Lincoln, and B. Nordén, “DNA binding of Δ- and Λ-[Ru(phen)2DPPZ]2+,” Journal of the American Chemical Society, vol. 115, no. 9, pp. 3448–3454, 1993. View at Scopus
  27. G. Zhao, H. Sun, H. Lin, S. Zhu, X. Su, and Y. Chen, “Palladium(II) complexes with N,N'-dialkyl-1,10-phenanthroline-2,9- dimathanamine: synthesis, characterization and cytotoxic activity,” Journal of Inorganic Biochemistry, vol. 72, no. 3-4, pp. 173–177, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Schwarzenbach and H. Flaschka, Complexometric Titrations, Interscience, New York, NY, USA, 1969.
  29. A. E. Martell and R. J. Motekaitis, Determination and Use of Stability Constants, VCH, New York, NY, USA, 1989.
  30. C. R. Krishnamoorthy, S. Sunil, and K. Ramalingam, “The effect of ligand donor atoms on ternary complex stability,” Polyhedron, vol. 4, no. 8, pp. 1451–1456, 1985. View at Scopus