About this Journal Submit a Manuscript Table of Contents
ISRN Nanotechnology
Volume 2012 (2012), Article ID 365438, 6 pages
http://dx.doi.org/10.5402/2012/365438
Research Article

Nanosilver Application in Dental Cements

1Department of Prevention and Oral Rehabilitation, School of Dentistry, Federal University of Goiás, 74605220 Goiânia, GO, Brazil
2Department of Oral Science, School of Dentistry, Federal University of Goiás, 74605220 Goiânia, GO, Brazil
3Physics Institute, Federal University of Goiás, 74001970 Goiânia, GO, Brazil

Received 19 April 2012; Accepted 20 June 2012

Academic Editors: P. O. Käll, P. Melinon, T. Pal, and T. I. Shabatina

Copyright © 2012 Ana Paula Rodrigues Magalhães et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. Whittaker, C. M. Klier, and P. E. Kolenbrander, “Mechanisms of adhesion by oral bacteria,” Annual Review of Microbiology, vol. 50, pp. 513–552, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Estrela, G. B. Sydney, J. A. P. Figueiredo, and C. R. De Araújo Estrela, “A model system to study antimicrobial strategies in endodontic biofilms,” Journal of Applied Oral Science, vol. 17, no. 2, pp. 87–91, 2009. View at Scopus
  3. D. R. Monteiro, L. F. Gorup, A. S. Takamiya, A. C. Ruvollo-Filho, E. R. D. Camargo, and D. B. Barbosa, “The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver,” International Journal of Antimicrobial Agents, vol. 34, no. 2, pp. 103–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. P. Allaker, “Critical review in oral biology & medicine: the use of nanoparticles to control oral biofilm formation,” Journal of Dental Research, vol. 89, no. 11, pp. 1175–1186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Bürgers, A. Eidt, R. Frankenberger et al., “The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials,” Archives of Oral Biology, vol. 54, no. 6, pp. 595–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Saku, H. Kotake, R. J. Scougall-Vilchis et al., “Antibacterial activity of composite resin with glass-ionomer filler particles,” Dental Materials Journal, vol. 29, no. 2, pp. 193–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Daugela, R. Oziunas, and G. Zekonis, “Antibacterial potential of contemporary dental luting cements,” Stomatologija, vol. 10, no. 1, pp. 16–21, 2008. View at Scopus
  8. H. Zhang, Y. Shen, N. D. Ruse, and M. Haapasalo, “Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis,” Journal of Endodontics, vol. 35, no. 7, pp. 1051–1055, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. de Queiroz, P. Nelson-Filho, L. A. B. da Silva, S. Assed, R. A. B. da Silva, and Y. I. Izabel, “Antibacterial activity of root canal filling materials for primary teeth: zinc oxide and eugenol cement, calen paste thickened with zinc oxide, sealapex and EndoREZ,” Brazilian Dental Journal, vol. 20, no. 4, pp. 290–296, 2009. View at Scopus
  10. D. Xie, Y. Weng, X. Guo, J. Zhao, R. L. Gregory, and C. Zheng, “Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions,” Dental Materials, vol. 27, no. 5, pp. 487–496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Ahn, S. J. Lee, J. K. Kook, and B. S. Lim, “Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles,” Dental Materials, vol. 25, no. 2, pp. 206–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Sintubin, B. De Gusseme, P. Van Der Meeren, B. F. G. Pycke, W. Verstraete, and N. Boon, “The antibacterial activity of biogenic silver and its mode of action,” Applied Microbiology and Biotechnology, vol. 91, no. 1, pp. 153–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Durner, M. Stojanovic, E. Urcan, R. Hickel, and F. X. Reichl, “Influence of silver nano-particles on monomer elution from light-cured composites,” Dental Materials, vol. 27, no. 7, pp. 631–636, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Bao, D. Zhang, and P. Qi, “Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection,” Journal of Colloid and Interface Science, vol. 360, no. 2, pp. 463–470, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Chaloupka, Y. Malam, and A. M. Seifalian, “Nanosilver as a new generation of nanoproduct in biomedical applications,” Trends in Biotechnology, vol. 28, no. 11, pp. 580–588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. A. Dankovich and D. G. Gray, “Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment,” Environmental Science and Technology, vol. 45, no. 5, pp. 1992–1998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Gangadharan, K. Harshvardan, G. Gnanasekar, D. Dixit, K. M. Popat, and P. S. Anand, “Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection,” Water Research, vol. 44, no. 18, pp. 5481–5487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Nam, “In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles,” Journal of Advanced Prosthodontics, vol. 3, pp. 20–24, 2011.
  19. A. Kurek, A. M. Grudniak, A. Kraczkiewicz-Dowjat, and K. I. Wolska, “New antibacterial therapeutics and strategies,” Polish Journal of Microbiology, vol. 60, no. 1, pp. 3–12, 2011. View at Scopus
  20. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. E. Samberg, P. E. Orndorff, and N. A. Monteiro-Riviere, “Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods,” Nanotoxicology, vol. 5, no. 2, pp. 244–253, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. B. Lansdown, “Silver. I: its antibacterial properties and mechanism of action,” Journal of Wound Care, vol. 11, no. 4, pp. 125–130, 2002. View at Scopus
  23. K. Yoshida, M. Tanagawa, S. Matsumoto, T. Yamada, and M. Atsuta, “Antibacterial activity of resin composites with silver-containing materials,” European Journal of Oral Sciences, vol. 107, no. 4, pp. 290–296, 1999. View at Scopus
  24. C. Cinar, T. Ulusu, B. Ozçelik, N. Karamüftüoğlu, and H. Yücel, “Antibacterial effect of silver-zeolite containing root-canal filling material,” Journal of Biomedical Materials Research—Part B, vol. 90, no. 2, pp. 592–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. E. Odabaş, C. Cinar, G. Akça, I. Araz, T. Ulusu, and H. Yücel, “Short-term antimicrobial properties of mineral trioxide aggregate with incorporated silver-zeolite,” Dental Traumatology, vol. 27, no. 3, pp. 189–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. K. D. Secinti, H. Özalp, A. Attar, and M. F. Sargon, “Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants,” Journal of Clinical Neuroscience, vol. 18, no. 3, pp. 391–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. N. Lok, C. M. Ho, R. Chen et al., “Silver nanoparticles: partial oxidation and antibacterial activities,” Journal of Biological Inorganic Chemistry, vol. 12, no. 4, pp. 527–534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Yamamoto, S. Ohashi, M. Aono, T. Kokubo, I. Yamada, and J. Yamauchi, “Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci,” Dental Materials, vol. 12, no. 4, pp. 227–229, 1996. View at Scopus
  29. F. Mirzajani, A. Ghassempour, A. Aliahmadi, and M. A. Esmaeili, “Antibacterial effect of silver nanoparticles on Staphylococcus aureus,” Research in Microbiology, vol. 162, no. 5, pp. 542–549, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Estrela, L. L. Bammann, C. R. Estrela, R. S. Silva, and J. D. Pécora, “Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal,” Brazilian Dental jJournal, vol. 11, no. 1, pp. 3–9, 2000. View at Scopus
  31. M. R. Leonardo, L. A. B. Da Silva, M. Tanomaru Filho, K. C. Bonifácio, and I. Y. Ito, “In vitro evaluation of antimicrobial activity of sealers and pastes used in endodontics,” Journal of Endodontics, vol. 26, no. 7, pp. 391–394, 2000. View at Scopus
  32. M. Tagger, E. Tagger, and A. Kfir, “Release of calcium and hydroxyl ions from set endodontic sealers containing calcium hydroxide,” Journal of Endodontics, vol. 14, no. 12, pp. 588–591, 1988. View at Publisher · View at Google Scholar · View at Scopus
  33. D. A. Cowart, S. M. Guida, S. Ismat Shah, and A. G. Marsh, “Effects of Ag nanoparticles on survival and oxygen consumption of zebra fish embryos, Danio rerio,” Journal of Environmental Science and Health—Part A, vol. 46, no. 10, pp. 1122–1128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Korani, S. M. Rezayat, K. Gilani, S. Arbabi Bidgoli, and S. Adeli, “Acute and subchronic dermal toxicity of nanosilver in guinea pig,” International Journal of Nanomedicine, vol. 6, pp. 855–862, 2011. View at Scopus
  35. K. Bilberg, M. B. Hovgaard, F. Besenbacher, and E. Baatrup, “In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio),” Journal of Toxicology, vol. 2012, Article ID 293784, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. T. M. Gerzina and W. R. Hume, “Effect of hydrostatic pressure on the diffusion of monomers through dentin in vitro,” Journal of Dental Research, vol. 74, no. 1, pp. 369–373, 1995. View at Scopus