About this Journal Submit a Manuscript Table of Contents
ISRN Algebra
Volume 2012 (2012), Article ID 367129, 19 pages
http://dx.doi.org/10.5402/2012/367129
Research Article

On the Existence of ( ๐‘ฃ , ๐‘˜ , ๐œ† ) Difference Sets with ๐‘˜ < 1 2 5 0 and ๐‘˜ โˆ’ ๐œ† Is a Square

Division of Sciences and Mathematics, Department of Mathematics, Livingstone College, Salisbury, NC 28144, USA

Received 20 January 2012; Accepted 8 February 2012

Academic Editors: A. V. Kelarev, D. Kressner, H. You, and A. Zimmermann

Copyright © 2012 Adegoke Solomon Osifodunrin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Jungnickel, A. Pott, and K. W. Smith, โ€œDifference sets,โ€ in The CRC Handbook of Combinatorial Designs, Preprint, C. J. Colbourn and J. H. Dinitz, Eds., CRC Press, 2005.
  2. K. T. Arasu, โ€œOn Lander's conjecture for the case λ=3,J,โ€ in Proceedings of the 1st Carbondale Combinatorics Conference, vol. 1, pp. 5โ€“11, 1987. View at Zentralblatt MATH
  3. K. T. Arasu and S. K. Sehgal, โ€œNon-existence of some difference sets,โ€ Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 32, pp. 207โ€“211, 2000.
  4. L. D. Baumert, Cyclic Difference Sets, vol. 182 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1971.
  5. J. F. Dillon, โ€œVariations on a scheme of McFarland for noncyclic difference sets,โ€ Journal of Combinatorial Theory. Series A, vol. 40, no. 1, pp. 9โ€“21, 1985. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  6. M. Hall, Jr., Combinatorial Theory, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, New York, NY, USA, 2nd edition, 1986, A Wiley-Interscience Publication.
  7. J. E. Iiams, โ€œLander's tables are complete,โ€ in Difference Sets, Sequences and Their Correlation Properties, vol. 542, pp. 239โ€“257, Klumer Academic, Dordrecht, The Netherlands, 1999. View at Zentralblatt MATH
  8. Y. J. Ionin and M. S. Shrikhande, Combinatorics of Symmetric Designs, vol. 5 of New Mathematical Monographs, Cambridge University Press, Cambridge, UK, 2006. View at Publisher ยท View at Google Scholar
  9. D. Jungnickel and A. Pott, โ€œDifference sets: an introduction,โ€ in Difference Sets, Sequences and Their Correlation Properties, vol. 542, pp. 259โ€“295, Klumer Academic, Dordrecht, The Netherlands, 1999. View at Zentralblatt MATH
  10. L. E. Kopilovich, โ€œDifference sets in noncyclic abelian groups,โ€ Cybernetics, vol. 25, no. 2, pp. 153โ€“157, 1989. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  11. E. S. Lander, Symmetric Designs: An Algebraic Approach, vol. 74 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1983. View at Publisher ยท View at Google Scholar
  12. A. Pott, Finite Geometry and Character Theory, vol. 1601 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1995.
  13. B. Schmidt, โ€œCyclotomic integers and finite geometry,โ€ Journal of the American Mathematical Society, vol. 12, no. 4, pp. 929โ€“952, 1999. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  14. R. J. Turyn, โ€œCharacter sums and difference sets,โ€ Pacific Journal of Mathematics, vol. 15, pp. 319โ€“346, 1965. View at Zentralblatt MATH
  15. M. Hall, Jr., โ€œCyclic projective planes,โ€ Duke Mathematical Journal, vol. 14, pp. 1079โ€“1090, 1947. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  16. K. T. Arasu and S. K. Sehgal, โ€œOn abelian difference sets,โ€ in Algebra: Some Recent Advances, pp. 1โ€“27, Birkhäuser, Basle, Switzerland, 1999. View at Zentralblatt MATH
  17. D. R. Hughes, โ€œBiplanes and semi-biplanes,โ€ in Proceedings of the Australian Conference on Combinatorial Mathematics, vol. 686 of Lecture Notes in Mathematics, pp. 55โ€“58, Springer, Berlin, Germany, 1978. View at Zentralblatt MATH
  18. R. E. Kibler, โ€œA summary of noncyclic difference sets,โ€ Journal of Combinatorial Theory. Series A, vol. 25, no. 1, pp. 62โ€“67, 1978.
  19. A. V. López and M. A. G. Sánchez, โ€œOn the existence of abelian difference sets with 100<k150,โ€ Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 23, pp. 97โ€“112, 1997. View at Zentralblatt MATH
  20. B. Franklin and S. Sam, โ€œNon existence of some cyclic difference sets,โ€ 2007.
  21. A. S. Osifodunrin, โ€œOn the existence of non-abelian (210, 77, 28), (336, 135, 54) and (496, 55,6) difference sets,โ€ Discrete Mathematics, Algorithms and Applications, vol. 3, no. 1, pp. 121โ€“137, 2011. View at Publisher ยท View at Google Scholar
  22. R. A. Liebler, โ€œThe inversion formula,โ€ Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 13, pp. 143โ€“160, 1993. View at Zentralblatt MATH
  23. I. Stewart and D. Tall, Algebraic Number Theory and Fermat's Last Theorem, A K Peters, Natick, Mass, USA, Third edition, 2002.
  24. S. L. Ma, โ€œPlanar functions, relative difference sets, and character theory,โ€ Journal of Algebra, vol. 185, no. 2, pp. 342โ€“356, 1996. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  25. S. Lang, Algebraic Number Theory, Addison-Wesley Publishing, Reading, Mass, USA, 1970.
  26. O. Gjoneski, A. S. Osifodunrin, and K. W. Smith, on existence of (176, 50, 14) and (704, 38,2) difference sets, to appear.
  27. W. Ledermann, Introduction to Group Characters, Cambridge University Press, Cambridge, UK, 1977.
  28. M. Hall, Jr., The theory of Groups, The Macmillan Company, New York, NY, USA, 1959.