About this Journal Submit a Manuscript Table of Contents
ISRN Nanotechnology
Volume 2012 (2012), Article ID 372505, 6 pages
http://dx.doi.org/10.5402/2012/372505
Research Article

Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles

1Department of Electronics and Instrumentation Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram 521230, India
2Department of Chemistry, C.S.T.S. Government Kalasala, Jangareddygudem 534 447, India

Received 1 February 2012; Accepted 4 March 2012

Academic Editor: Z. Crnjak Orel

Copyright © 2012 Satyanarayana Talam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Tokumoto, V. Briois, C. V. Santilli, and S. H. Pulcinelli, “Preparation of ZnO nanoparticles: structural study of the molecular precursor,” Journal of Sol-Gel Science and Technology, vol. 26, no. 1–3, pp. 547–551, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Kumar, L. S. Panchakarla, S. V. Bhat, U. Maitra, K. S. Subrahmanyam, and C. N. R. Rao, “Photoluminescence, white light emitting properties and related aspects of ZnO nanoparticles admixed with graphene and GaN,” Nanotechnology, vol. 21, no. 38, Article ID 385701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Thomas, “Invisible circuits,” Nature, vol. 389, no. 6654, pp. 907–908, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. L. Wang, “Nanostructures of zinc oxide,” Materials Today, vol. 7, no. 6, pp. 26–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. N. R. Rao and A. Govindaraj, in Nanotubes and Nanowires, H. Kroto, P. O’Brien, and H. Craighead, Eds., The RSC Nanoscience and Nanotechnology Series, Royal Society of Chemistry, London, UK, 2005.
  6. S. C. Ko, Y. C. Kim, S. S. Lee, S. H. Choi, and S. R. Kim, “Micromachined piezoelectric membrane acoustic device,” Sensors and Actuators, A, vol. 103, no. 1-2, pp. 130–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Zaouk, Y. Zaatar, R. Asmar, and J. Jabbour, “Piezoelectric zinc oxide by electrostatic spray pyrolysis,” Microelectronics Journal, vol. 37, no. 11, pp. 1276–1279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. D. H. Zhang, Z. Y. Xue, and Q. P. Wang, “Formation of ZnO nanoparticles by the reaction of zinc metal with aliphatic alcohols,” Journal of Physics D, vol. 35, no. 21, pp. 2837–2840, 2002. View at Publisher · View at Google Scholar
  9. H. Hayashi, A. Ishizaka, M. Haemori, and H. Koinuma, “Bright blue phosphors in ZnO-WO3 binary system discovered through combinatorial methodology,” Applied Physics Letters, vol. 82, no. 9, pp. 1365–1367, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H. T. Ng, B. Chen, J. Li et al., “Optical properties of single-crystalline ZnO nanowires on m-sapphire,” Applied Physics Letters, vol. 82, no. 13, pp. 2023–2025, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Materials science: conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science, vol. 309, no. 5741, pp. 1700–1704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property,” Sensors and Actuators, B, vol. 102, no. 2, pp. 248–252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Topoglidis, A. E. G. Cass, B. O'Regan, and J. R. Durrant, “Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films,” Journal of Electroanalytical Chemistry, vol. 517, no. 1-2, pp. 20–27, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Hames, Z. Alpaslan, A. Kösemen, S. E. San, and Y. Yerli, “Electrochemically grown ZnO nanorods for hybrid solar cell applications,” Solar Energy, vol. 84, no. 3, pp. 426–431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Jun, X. Changsheng, B. Zikui, Z. Bailin, H. Kaijin, and W. Run, “Preparation of ZnO-glass varistor from tetrapod ZnO nanopowders,” Materials Science and Engineering B, vol. 95, no. 2, pp. 157–161, 2002. View at Publisher · View at Google Scholar
  16. P. Sharma, K. Sreenivas, and K. V. Rao, “Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering,” Journal of Applied Physics, vol. 93, no. 7, pp. 3963–3970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. P. V. Kamat, R. Huehn, and R. Nicolaescu, “A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water,” Journal of Physical Chemistry B, vol. 106, no. 4, pp. 788–794, 2002. View at Publisher · View at Google Scholar
  18. M. S. Takumoto, , S. H. Pulcinelli, C. V. Santilli, and V. Briois, Journal of Physical Chemistry B, vol. 107, p. 568, 2003.
  19. M. Singhal, V. Chhabra, P. Kang, and D. O. Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion,” Materials Research Bulletin, vol. 32, no. 2, pp. 239–247, 1997. View at Scopus
  20. F. Rataboul, C. Nayral, M. J. Casanove, A. Maisonnat, and B. Chaudret, “Synthesis and characterization of monodisperse zinc and zinc oxide nanoparticles from the organometallic precursor [Zn(C6H11)2],” Journal of Organometalic Chemistry, vol. 643-644, pp. 307–312, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Okuyama and W. W. Lenggoro, “Preparation of nanoparticles via spray route,” Chemical Engineering Science, vol. 58, no. 3–6, pp. 537–547, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. B. Moghaddam, T. Nazari, J. Badraghi, and M. Kazemzad, “Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film,” International Journal of Electrochemical Science, vol. 4, no. 2, pp. 247–257, 2009. View at Scopus
  23. Y.-L. Wei and P.-C. Chang, “Characteristics of nano zinc oxide synthesized under ultrasonic condition,” Journal of Physics and Chemistry of Solids, vol. 69, no. 2-3, pp. 688–692, 2008. View at Publisher · View at Google Scholar
  24. X.-L. Hu, Y.-J. Zhu, and S.-W. Wang, “Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods,” Materials Chemistry and Physics, vol. 88, no. 2-3, pp. 421–426, 2004. View at Publisher · View at Google Scholar
  25. J.-J. Wu and S.-C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Advanced Materials, vol. 14, no. 3, pp. 215–218, 2002. View at Publisher · View at Google Scholar
  26. H. J. Zhai, W. H. Wu, F. Lu, H. -S. Wang, and C. Wang, “Effects of ammonia and cetyltrimethylammonium bromide (CTAB) on morphologies of ZnO nano- and micromaterials under solvothermal process,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 1024–1028, 2008. View at Publisher · View at Google Scholar
  27. M. Bitenc, M. Marinšek, and Z. Crnjak Orel, “Preparation and characterization of zinc hydroxide carbonate and porous zinc oxide particles,” Journal of the European Ceramic Society, vol. 28, no. 15, pp. 2915–2921, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Zhou, F. Zhao, Y. Wang, Y. Zhang, and L. Yang, “Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties,” Journal of Luminescence, vol. 122-123, no. 1-2, pp. 195–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. M. Khoshhesab, M. Sarfaraz, and M. A. Asadabad, “Preparation of ZnO nanostructures by chemical precipitation method,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 41, no. 7, pp. 814–819, 2011. View at Publisher · View at Google Scholar
  30. JCPDS, Powder Diffraction File, Alphabetical Index, Inorganic Compounds, International Centre for Diffraction Data, Newtown Square, Pa, USA, 1977.
  31. B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, Mass, USA, 3rd edition, 1967.
  32. A. Gupta, H. S. Bhatti, D. Kumar, N. K. Verma, and dan R. P. Tandon, “Nano and Bulk Crystals of ZnO: synthesis and Characterization,” Digest Journal of. Nanomaterials and Biostructures, vol. 1, no. 1, pp. 1–9, 2006.
  33. Y. D. Jin, J. P. Yang, P. L. Heremans et al., “Single-layer organic light-emitting diode with 2.0% external quantum efficiency prepared by spin-coating,” Chemical Physics Letters, vol. 320, no. 5-6, pp. 387–392, 2000. View at Scopus
  34. S. Shionoya and W. M. Yen, Eds., Phosphor Handbook, CRC Press, Boca Raton, Fla, USA, 1998.
  35. L. I. Berger, Semiconductor Materials, CRC Press, Boca Raton, Fla, USA, 1997.
  36. L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” Journal of Physical Chemistry, vol. 90, no. 12, pp. 2555–2560, 1986. View at Scopus
  37. X. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, “Large-scale synthesis of six-nanometer-wide ZnO nanobelts,” Journal of Physical Chemistry B, vol. 108, no. 26, pp. 8773–8777, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus, “Luminescence and photophysics of CdS semiconductor clusters: the nature of the emitting electronic state,” Journal of Physical Chemistry, vol. 90, no. 15, pp. 3393–3399, 1986.
  39. J. R. Heath and J. J. Shiang, “Covalency in semiconductor quantum dots,” Chemical Society Reviews, vol. 27, no. 1, pp. 65–71, 1998.
  40. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Advanced Materials, vol. 13, no. 2, pp. 113–116, 2001. View at Publisher · View at Google Scholar
  41. G. Williams and P. V. Kamat, “Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide,” Langmuir, vol. 25, no. 24, pp. 13869–13873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Srinivasa Rao, B. Rajesh Kumar, V. Rajagopal Reddy, and T. Subba Rao, “Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique,” Chalcogenide Letters, vol. 8, no. 3, pp. 177–185, 2011.