About this Journal Submit a Manuscript Table of Contents
ISRN Pediatrics
Volume 2012 (2012), Article ID 375038, 6 pages
http://dx.doi.org/10.5402/2012/375038
Research Article

Cochlear Dysfunction in Children following Cardiac Bypass Surgery

1Department of Pediatrics, Ain Shams University, Cairo, Egypt
2Department of Audiology, Ain Shams University, Cairo, Egypt

Received 7 March 2012; Accepted 7 May 2012

Academic Editors: M. Adhikari and A. Maheshwari

Copyright © 2012 Mona M. El Ganzoury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background. Sensorineural hearing loss after procedures including extracorporeal circulation and hypothermia is greater than general population. Mild hypothermia has a protective role on cochlea; however, deep hypothermia may result in cochlear injury. This research aimed at assessing auditory function in children after open heart surgery in relation to different hypothermic techniques. Subjects and Methods. Forty children with acyanotic heart diseases who underwent open heart surgery were included: group I: twenty patients subjected to mild hypothermia (33° to 37°C), group II: twenty patients subjected to moderate hypothermia (28° to 32°C). Audiological assessment included basic evaluation and otoacoustic emissions. Results. Both groups had distortion-product otoacoustic emissions (DPOAEs) amplitude >3 dB SPL at all frequencies. However, group II showed lower amplitude at overall and at high frequencies (4.416–8.837 KHz) than group I. Transient evoked otoacoustic emissions (TEOAEs) showed partial pass in three patients of group I (15%) and in 15 patients of group II (75%). Moreover, group II showed statistical significant reduction in overall TEOAEs amplitude as well as at high frequencies (2–4 KHz). Conclusions. Patients exposed to moderate hypothermic technique had subtle cochlear dysfunction. Otoacoustic emissions should be used for early detection of subtle cochlear dysfunction in operated cardiac children.