About this Journal Submit a Manuscript Table of Contents
ISRN Pediatrics
Volume 2012 (2012), Article ID 375038, 6 pages
http://dx.doi.org/10.5402/2012/375038
Research Article

Cochlear Dysfunction in Children following Cardiac Bypass Surgery

1Department of Pediatrics, Ain Shams University, Cairo, Egypt
2Department of Audiology, Ain Shams University, Cairo, Egypt

Received 7 March 2012; Accepted 7 May 2012

Academic Editors: M. Adhikari and A. Maheshwari

Copyright © 2012 Mona M. El Ganzoury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Ness, J. A. Stankiewicz, T. Kaniff, R. Pifarre, and J. Allegretti, “Sensorineural hearing loss associated with aortocoronary bypass surgery: a prospective analysis,” Laryngoscope, vol. 103, no. 6, pp. 589–593, 1993. View at Scopus
  2. A. Harry, J. R. Wellons, and R. K. Zacour, “Adult cardiac surgery (Part A-General Considerations)-cardiopulmonary bypass,” in Mastery of Cardiothoracic Surgery, L. R. Kaiser, I. L. Kron, and T. L. Spray, Eds., pp. 305–314, Lippincott Williams & Wilkins Companies, 2007.
  3. G. Namysłowski, K. Morawski, I. Urban, G. Lisowska, and J. Skalski, “Influence of hypothermia and extracorporeal circulation on transiently evoked otoacoustic emission (TEOAE) in children operated on for various heart defects (I),” Otolaryngologia Polska, vol. 57, no. 2, pp. 263–269, 2003. View at Scopus
  4. E. Veuillet, M. Gartner, G. Champsaur, J. Neidecker, and L. Collet, “Effects of hypothermia on cochlear micromechanical properties in humans,” Journal of the Neurological Sciences, vol. 145, no. 1, pp. 69–76, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. D. T. Kemp, “Stimulated acoustic emissions from within the human auditory system,” Journal of the Acoustical Society of America, vol. 64, no. 5, pp. 1386–1391, 1978. View at Scopus
  6. J. H. Sabes, “Audiologic testing,” in Current Otolaryngology, A. K. Lalwani, Ed., pp. 596–706, The McGraw-Hill, 2007.
  7. T. J. Glattke and M. S. Robinette, “Transient evoked otoacoustic emissions,” in Otoacoustic Emissions – Clinical Applications, R. M. Robinette and T. J. Glattke, Eds., pp. 95–115, Thieme, New York, NY, USA, 2nd edition, 2002.
  8. M. P. Gorga, S. T. Neely, and P. A. Dorn, “Distortion product otoacoustic emissions in relation to hearing loss,” in Otoacoustic Emissions–Clinical Applications, R. M. Robinette and T. Glattke, Eds., pp. 243–272, Thieme, New York, NY, USA, 2nd edition, 2002.
  9. R. Khvoles, S. Freeman, and H. Sohmer, “Effect of temperature on the transient evoked and distortion product otoacoustic emissions in rats,” Audiology and Neuro-Otology, vol. 3, no. 6, pp. 349–360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Seifert, A. Lamprecht-Dinnesen, B. Asfour, H. Rotering, H. G. Bone, and H. H. Scheid, “The influence of body temperature on transient evoked otoacoustic emissions,” British Journal of Audiology, vol. 32, no. 6, pp. 387–398, 1998. View at Scopus
  11. E. Seifert, K. Brand, K. Van de Flierdt, M. Hahn, M. Riebandt, and A. Lamprecht-Dinnesen, “The influence of hypothermia on outer hair cells of the cochlea and its efferents,” British Journal of Audiology, vol. 35, no. 1, pp. 87–98, 2001. View at Scopus
  12. R. A. Rhoads, “Gas transfer and transport,” in Medical Physiology–Principles for Clinical medicine, R. A. Rhoads and D. R. Bel, Eds., pp. 348–361, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 3rd edition, 2009.
  13. A. B. Maxon, K. R. White, B. R. Vohr, and T. R. Behrens, “Using transient evoked otoacoustic emissions for neonatal hearing screening,” British Journal of Audiology, vol. 27, no. 2, pp. 149–153, 1993. View at Scopus
  14. M. A. Padula and A. M. Ades, “Neurodevelopmental implications of congenital heart disease,” NeoReviews, vol. 7, no. 7, pp. e363–e369, 2006.
  15. W. J. Greeley, F. H. Kern, R. M. Ungerleider et al., “The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children,” Journal of Thoracic and Cardiovascular Surgery, vol. 101, no. 5, pp. 783–794, 1991. View at Scopus
  16. A. Marelli, K. Gauvreau, M. Landzberg, and K. Jenkins, “Sex differences in mortality in children undergoing congenital heart disease surgery: a United States population-based study,” Circulation, vol. 122, no. 11, pp. S234–S240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. N. K. Shrestha and S. Padmavati, “Congenital heart disease in Delhi school children,” Indian Journal of Medical Research, vol. 72, no. 3, pp. 403–407, 1980. View at Scopus
  18. V. M. Vashishtha, A. Kalra, K. Kalra, and V. K. Jain, “Prevalence of congenital heart disease in school children,” Indian Pediatrics, vol. 30, no. 11, pp. 1337–1340, 1993. View at Scopus
  19. S. L. Chadha, N. Singh, and D. K. Shukla, “Epidemiological study of congenital heart disease,” Indian Journal of Pediatrics, vol. 68, no. 6, pp. 507–510, 2001. View at Scopus
  20. J. W. Cameron, A. Rosenthal, and A. D. Olson, “Malnutrition in hospitalized children with congenital heart disease,” Archives of Pediatrics and Adolescent Medicine, vol. 149, no. 10, pp. 1098–1102, 1995. View at Scopus
  21. B. Varan, K. Tokel, and G. Yilmaz, “Malnutrition and growth failure in cyanotic and acyanotic congenital heart disease with and without pulmonary hypertension,” Archives of Disease in Childhood, vol. 81, no. 1, pp. 49–52, 1999. View at Scopus
  22. I. K. Arenberg, G. W. Allen, and A. Deboer, “Sudden deafness immediately following cardiopulmonary bypass,” Journal of Laryngology and Otology, vol. 86, no. 1, pp. 73–77, 1972. View at Scopus
  23. H. M. Plasse, F. C. Spencer, M. Mittleman, and J. O. Frost, “Unilateral sudden loss of hearing. An unusual complication of cardiac operation,” Journal of Thoracic and Cardiovascular Surgery, vol. 79, no. 6, pp. 822–826, 1980. View at Scopus
  24. R. J. Brownson, M. H. Stroud, and W. F. Carver, “Extracorporeal cardiopulmonary bypass and hearing,” Archives of Otolaryngology, vol. 93, no. 2, pp. 179–182, 1971. View at Scopus
  25. M. J. Shapiro, J. M. Purn, and C. Raskin, “A study of the effects of cardiopulmonary bypass surgery on auditory function,” Laryngoscope, vol. 91, no. 12, pp. 2046–2052, 1981. View at Scopus
  26. H. M. Ibrahim, T. B. Kamel, N. M. S. Abdel-Salam, and S. R. Abu-Ata, “Study of auditory function in children with chronic lung diseases,” International Journal of Pediatric Otorhinolaryngology, vol. 75, no. 1, pp. 39–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Borin and O. L. M. Cruz, “Study of distortion-product otoacoustic emissions during hypothermia in humans,” Brazilian Journal of Otorhinolaryngology, vol. 74, no. 3, pp. 401–409, 2008. View at Scopus
  28. S. Meri, M. Aronen, and M. Leijala, “Complement activation during cardiopulmonary bypass in children,” Complement, vol. 5, no. 1, pp. 46–54, 1988. View at Scopus
  29. F. Watanabe, K. Koga, N. Hakuba, and K. Gyo, “Hypothermia prevents hearing loss and progressive hair cell loss after transient cochlear ischemia in gerbils,” Neuroscience, vol. 102, no. 3, pp. 639–645, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Hyodo, N. Hakuba, K. Koga et al., “Hypothermia reduces glutamate efflux in perilymph following transient cochlear ischemia,” Neuroreport, vol. 12, no. 9, pp. 1983–1987, 2001. View at Scopus
  31. S. Takeda, N. Hakuba, T. Yoshida et al., “Postischemic mild hypothermia alleviates hearing loss because of transient ischemia,” Neuroreport, vol. 19, no. 13, pp. 1325–1328, 2008. View at Publisher · View at Google Scholar · View at Scopus