About this Journal Submit a Manuscript Table of Contents
ISRN Soil Science
Volume 2012 (2012), Article ID 375842, 7 pages
http://dx.doi.org/10.5402/2012/375842
Research Article

Applicability of Hydrus-1D in a Mediterranean Mountain Area Submitted to Land Use Changes

1Department of Agronomy and Food Engineering and Biotechnology, Poltechnicy University of Catalonia, 08860 Castelldefels, Spain
2Department of Environmental Biophysics and Soils, LAB-FERRER Consulting Center, 25200 Cervera, Spain
3CREAF, Autonomous University of Barcelona, 08193 Bellaterra, Spain

Received 17 December 2011; Accepted 1 February 2012

Academic Editors: M. Bernoux and M. Wanner

Copyright © 2012 Carles M. Rubio and Rafael Poyatos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. R. Bruce and A. Klute, “The measurement of soil moisture diffusivity,” Proceedings-Soil Science Society of America, vol. 20, pp. 458–462, 1956. View at Google Scholar
  2. Y. Mualem and G. Dagan, “Hydraulic conductivity of soils. Unified approach to the statistical models,” Soil Science Society of America Journal, vol. 42, no. 3, pp. 392–395, 1978. View at Google Scholar · View at Scopus
  3. F. Abbasi, J. Feyen, and M. T. Van Genuchten, “Two-dimensional simulation of water flow and solute transport below furrows: model calibration and validation,” Journal of Hydrology, vol. 290, no. 1-2, pp. 63–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Schumacher, Die physic des Bodens, Wiegandt & Hempel, Berlin, Germany, 1864.
  5. J. B. Lawes, J. H. Gilbert, and R. Warington, On the Amount and Composition of the Rain and Drainage Water Collected at Rothamsted, Williams, Clowes and Sons Ltd, London, UK, 1882.
  6. R. E. Horton, “Remarks on hydrologic terminology,” Eos, Transactions, American Geophysical Union, vol. 23, pp. 479–482, 1942. View at Google Scholar
  7. K. Beven and P. Germann, “Macropores and water flow in soils,” Water Resources Research, vol. 18, no. 5, pp. 1311–1325, 1982. View at Google Scholar · View at Scopus
  8. E. Buckingham, Studies on the Movement of Soil Moisture, U.S. Department of Agriculture, Bull. No. 38, Bureau of Soils, Washington, DC, USA, 1907.
  9. L. A. Richards, “Capillary conduction of liquids through porous mediums,” Journal of Applied Physics, vol. 1, no. 5, pp. 318–333, 1931. View at Publisher · View at Google Scholar · View at Scopus
  10. W. H. Green and C. A. Ampt, “Studies on soils physics, I. Flow of air and water through soils,” Journal of Agricultural Science, vol. 4, pp. 1–24, 1911. View at Google Scholar
  11. J. R. Philip, “The theory of infiltration. 1. The infiltration equation and its solution,” Soil Science, vol. 83, pp. 345–357, 1957. View at Google Scholar
  12. M. T. van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Science Society of America Journal, vol. 44, no. 5, pp. 892–898, 1980. View at Google Scholar · View at Scopus
  13. J. Skopp, “Comment on Micro-meso and macroporosity of soil,” Soil Science Society of America Journal, vol. 45, no. 6, pp. 1244–1246, 1981. View at Google Scholar
  14. H. Flühler, W. Durner, and M. Flury, “Lateral solute mixing processes - A key for understanding field-scale transport of water and solutes,” Geoderma, vol. 70, no. 2–4, pp. 165–183, 1996. View at Google Scholar · View at Scopus
  15. N. J. Jarvis, “Modeling the impact of preferential flow on nonpoint source pollution,” in Physical Nonequilibrium in Soils: Modeling and Application, H. M. Selim and L. Ma, Eds., pp. 195–221, Ann Arbor Press, Chelsea, Mice, USA, 1998. View at Google Scholar
  16. J. M. H. Hendrickx, L. W. Dekker, and O. H. Boersma, “Unstable wetting fronts in water-repellent field soils,” Journal of Environmental Quality, vol. 22, no. 1, pp. 109–118, 1993. View at Google Scholar · View at Scopus
  17. J. S. Christiansen, M. Thorsen, T. Clausen, S. Hansen, and J. Christian Refsgaard, “Modelling of macropore flow and transport processes at catchment scale,” Journal of Hydrology, vol. 299, no. 1-2, pp. 136–158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Pruess and J. S. Y. Wang, “Numerical modelling of isothermal and non-isothermal flow in unsaturated fractured rock. A review,” in Flow and Transport Through Unsaturated Fractured Rock, Geophysics Monograph, D. D. Evans and T. J. Nicholson, Eds., vol. 42, pp. 11–22, American Geophysical Union, Washington, DC, USA, 1987. View at Google Scholar
  19. J. P. Gwo, P. M. Jardine, G. V. Wilson, and G. T. Yeh, “A multiple-pore-region concept to modeling mass transfer in subsurface media,” Journal of Hydrology, vol. 164, no. 1–4, pp. 217–237, 1995. View at Google Scholar · View at Scopus
  20. H. H. Gerke and M. T. Van Genuchten, “A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media,” Water Resources Research, vol. 29, no. 2, pp. 305–319, 1993. View at Google Scholar · View at Scopus
  21. C. Belmans, J. G. Wesseling, and R. A. Feddes, “Simulation model of the water balance of a cropped soil: SWATRE,” Journal of Hydrology, vol. 63, no. 3-4, pp. 271–286, 1983. View at Google Scholar · View at Scopus
  22. T. Vogel, “SWMII-Numerical model of two dimensional flow in a variably saturated porous medium,” Research Report 87, Department of Hydraulics and Basin Hydrology , Agricultural University, Wageningen, The Netherlands, 1987. View at Google Scholar
  23. J. Simunek and M. T. van Genuchten, “The CHAIN-2D code for simulating two-dimensional movement of water flor, heat and multiple solutes in variably-saturated porous media, Version 1.1,” Research Report 136, U.S. Salinity Laboratory, USDA, ARS, Riverside, Calif, USA, 1994. View at Google Scholar
  24. J. Simunek, K. Huang, M. Sejna, and M. Th. van Genuchten, “The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and multiple solutes in variable-saturated media. Version 1.0,” Tech. Rep. IGWMC-TPS-70, International Ground Water Center, Colorado School of Mines, Golden, Colorado, 1998, 162p. View at Google Scholar
  25. P. H. T. Beckett and R. Webster, “Soil variability: a review,” Soil and Fertilizers, vol. 34, pp. 1–15, 1971. View at Google Scholar
  26. R. L. Schafer, C. E. Johnson, A. J. Koolen, S. C. Gupta, and R. Horn, “Future research needs in soil compaction,” Transactions of the American Society of Agricultural Engineers, vol. 35, no. 6, pp. 1761–1770, 1992. View at Google Scholar · View at Scopus
  27. F. Pelegrín and F. Moreno, “Study of water infiltration in the soil under different tillage systems,” 1990, ISHS Acta Horticulturae 335: International Symposium on Irrigation of Horticultural Crops. View at Google Scholar
  28. F. Moreno, F. Pelegrín, J. E. Fernández, and J. M. Murillo, “Soil physical properties, water depletion and crop development under traditional and conservation tillage in southern Spain,” Soil and Tillage Research, vol. 41, no. 1-2, pp. 25–42, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. D. F. Scott and R. E. Schulze, “The hydrological effects of a wild-fire in a eucalypt afforested cachtment,” Southern African Forestry Journal, vol. 160, pp. 67–74, 1992. View at Google Scholar
  30. W. B. Voorhees, W. W. Nelson, and G. W. Randall, “Extent and persistence of subsoil compaction caused by heavy axle loads,” Soil Science Society of America Journal, vol. 50, no. 2, pp. 428–433, 1986. View at Google Scholar · View at Scopus
  31. B. C. Ball, D. J. Campbell, J. T. Douglas, J. K. Henshall, and M. F. O'Sullivan, “Soil structural quality, compaction and land management,” European Journal of Soil Science, vol. 48, no. 4, pp. 593–601, 1997. View at Google Scholar · View at Scopus
  32. A. C. Imeson, F. Perez-Trejo, H. Lavee, and A. Calvo-Cases, “Modelling and exploring the impacto f climate change on ecosystem degradation, hydrology and land use along a transect across the Mediterranean,” in Global Change: Climate Change and Climate Change Impacts, I. Troen, Ed., pp. 173–185, Proceed. Copenhagen Symposium, European Commission, EUR-15921, Brussels, Belgium, 1994. View at Google Scholar
  33. M. Shoshany, P. Kutiel, and H. Lavee, “Monitoring temporal vegetation cover changes in Mediterranean and arid ecosystems using a remote sensing technique: case study of the Judean Mountain and the Judean Desert,” Journal of Arid Environments, vol. 33, no. 1, pp. 9–21, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Hermawan and K. C. Cameron, “Structural changes in a silt loam under long-term conventional or minimum tillage,” Soil and Tillage Research, vol. 26, no. 2, pp. 139–150, 1993. View at Google Scholar · View at Scopus
  35. M. Langmaack, “Earthworm communities in arable land influenced by tillage, compaction, and soil,” Zeitschrift fur Okologie und Naturschutz, vol. 8, no. 1-2, pp. 11–21, 1999. View at Google Scholar · View at Scopus
  36. C. M. Rubio, Hidrodinámica de los suelos de un área de montaña media mediterránea sometida a cambios de uso y cubierta, Ph.D. thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2005, 195p.
  37. S. Haro, J. F. Fernandez, R. Josa, and F. Gallart, “Papel hidrológico y geomorfológico de las propiedades del suelo en una zona Pirenaica de campos abandonados Cal Parisa, Vallcebre,” in Estudios de Geomorfología en España. S.E.G., F. Lopez-Bermudez, C. Conesa, and M. A. Romero, Eds., pp. 243–250, Sociedad Española de Geomorfologia, Murcia, Spain, 1992. View at Google Scholar
  38. F. Gallart, P. Llorens, and J. Latron, “Studying the role of old agricultural terraces on runoff generation in a small Mediterranean mountainous basin,” Journal of Hydrology, vol. 159, no. 1–4, pp. 291–303, 1994. View at Google Scholar · View at Scopus
  39. F. Gallart, J. Latron, P. Llorens, and D. Rabadà, “Hydrological functioning of mediterranean mountain basins in Vallcebre, Catalonia: some challenges for hydrological modelling,” Hydrological Processes, vol. 11, no. 9, pp. 1263–1272, 1997. View at Google Scholar · View at Scopus
  40. R. Poyatos, J. Latron, and P. Llorens, “Land use and land cover change after agricultural abandonment: the case of a Mediterranean Mountain area (Catalan Pre-Pyrenees),” Mountain Research and Development, vol. 23, no. 4, pp. 362–368, 2003. View at Google Scholar · View at Scopus
  41. F. Gallart, P. Llorens, J. Latron, and D. Regüés, “Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees,” Hydrology and Earth System Sciences, vol. 6, no. 3, pp. 527–537, 2002. View at Google Scholar · View at Scopus
  42. R. Guardia and J. M. Ninot, “Distribution of the plant communities in the badlands of the upper Llobregat basin (southeastern Pyrenees),” Studia Geobotanica, vol. 12, pp. 83–102, 1992. View at Google Scholar
  43. E. Carrillo and J. Vigo, Mapa de Vegetació de Catalunya 1:50.000, Institut d'Estudis Catalans, Barcelona, Spain, 2002.
  44. Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys, United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA, 1996.
  45. P. Llorens, J. Latron, and F. Gallart, “Analysis of the role of agricultural abandoned terraces on the hydrology and sediment dynamics in a small mountainous basin. (High Llobregat, eastern Pyrenees),” Pirineos, vol. 139, pp. 27–46, 1992. View at Google Scholar
  46. W. P. Stakman, G. A. Valk, and G. G. van der Harst, Determination of Soil Moisture Retention Curves. I. Sand-Box Apparatus, ILRI, Wageningen, The Netherlands, 1969.
  47. L. A. Richards, “Pressure membrane apparatus: construction and use,” Agricultural Engineering, vol. 28, pp. 451–454, 1947. View at Google Scholar
  48. M.Th. van Genuchten, F. J. Leij, and S. R. Yates, “The RETC code for quantifying the hydraulic functions of unsaturated soils,” Tech. Rep. EPA/600/2-91/065, U.S. Environmental Protection Agency, Ada, Okla, USA, 1991, 85p. View at Google Scholar
  49. W. D. Reynolds and D. E. Elrick, “In situ measurement of field-saturated hydraulic conductivity, sorptivity and α-parameter using the Guelph permeameter,” Soil Science, vol. 140, pp. 292–302, 1985. View at Google Scholar
  50. M. Smith, R. G. Allen, J. L. Monteith, A. Perrier, L. Pereira, and A. Segeren, “Report of the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements,” Tech. Rep., United Nations-Food and Agriculture Organization, Rome, Italy, 1992, 54p. View at Google Scholar
  51. W. R. Gardner, “Water uptake and salt distribution patterns in saline soils,” in Isotope and Radiation Techniques in Soil Physics and Irrigation Studies, pp. 335–341, International Atomic Energy Agency, Vienna, Austria, 1967. View at Google Scholar
  52. M.Th. van Genuchten, “A numerical model for water and solute movement in and below the root zone,” Reseach Report 121, U.S. Salinity Laboratory, USDA, ARS, Riverside, Calif, USA, 1987. View at Google Scholar
  53. G. C. Topp, J. L. Davis, and A. P. Annan, “Electromagnetic determination of soil water content: measurements in coaxial transmission lines,” Water Resources Research, vol. 16, no. 3, pp. 574–582, 1980. View at Google Scholar
  54. S. C. Gupta and W. E. Larson, “Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density,” Water Resources Research, vol. 15, no. 6, pp. 1633–1635, 1979. View at Google Scholar
  55. W. J. Rawls, Y. A. Pachepsky, J. C. Ritchie, T. M. Sobecki, and H. Bloodworth, “Effect of soil organic carbon on soil water retention,” Geoderma, vol. 116, no. 1-2, pp. 61–76, 2003. View at Publisher · View at Google Scholar
  56. C. M. Rubio, “Applicability of site-specific pedotransfer functions and rosetta model for the estimation of dynamic soil hydraulic properties under different vegetation covers,” Journal of Soils and Sediments, vol. 8, no. 2, pp. 137–145, 2008. View at Publisher · View at Google Scholar
  57. C. M. Rubio, P. Llorens, and F. Gallart, “Uncertainty and efficiency of pedotransfer functions for estimating water retention characteristics of soils,” European Journal of Soil Science, vol. 59, no. 2, pp. 339–347, 2008. View at Publisher · View at Google Scholar
  58. G. W. Bloemen, “Calculation of hydraulic conductivities from texture and organic matter content,” Zeitschrift für Pflanzenernährung und Bodenkunde, vol. 143, pp. 581–605, 1980. View at Google Scholar
  59. J. M. Buttle and D. A. House, “Spatial variability of saturated hydraulic conductivity in shallow macroporous soils in a forested basin,” Journal of Hydrology, vol. 203, no. 1–4, pp. 127–142, 1997. View at Publisher · View at Google Scholar
  60. A. Solé, F. Plana, F. Gallart, R. Josa, G. Pardini, and R. Aringhieri, “How mudrock and soil physical properties influence badland formation at Vallcebre (Pre-Pyrenees, NE Spain),” Catena, vol. 19, no. 3-4, pp. 287–300, 1992. View at Google Scholar
  61. F. Gérard, M. Tinsley, and K. U. Mayer, “Preferential flow revealed by hydrologic modeling based on predicted hydraulic properties,” Soil Science Society of America Journal, vol. 68, no. 5, pp. 1526–1538, 2004. View at Google Scholar
  62. J. A. de Vos, J. Simunek, P. A. C. Raats, and R. A. Feddes, “Identification of the hydraulic properties of a layered silt loam,” in Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. Part 2, M.Th. van Genuchten, F. J. Leij, and L. Wu, Eds., pp. 783–798, U.S. Salinity Laboratory, USDA, ARS, Riverside, Calif, USA, 1999. View at Google Scholar
  63. D. Wildenschild, J. W. Hopmans, and J. Simunek, “Flow rate dependence of soil hydraulic characteristics,” Soil Science Society of America Journal, vol. 65, no. 1, pp. 35–48, 2001. View at Google Scholar