About this Journal Submit a Manuscript Table of Contents
ISRN Physical Chemistry
Volume 2012 (2012), Article ID 397052, 10 pages
http://dx.doi.org/10.5402/2012/397052
Research Article

Long- and Intermediate-Range Correlations in Polymer-Containing Ionic Liquids

1Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
2Department of Physics, Tver State University, Tver 170002, Russia

Received 28 July 2011; Accepted 23 August 2011

Academic Editors: I. Anusiewicz, S. Sasaki, and D. Strout

Copyright © 2012 Pavel V. Komarov and Lubov V. Zherenkova. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Welton and P. Wasserscheid, Ionic Liquids in Synthesis, Wiley-VCH, Weinheim, Germany, 2007.
  2. J. F. Wishart and E. W. Castner, “The physical chemistry of ionic liquids,” Journal of Physical Chemistry B, vol. 111, no. 18, pp. 4639–4640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Hermann, “Understanding ionic liquids at the molecular level: facts, problems, and controversies,” Angewandte Chemie, vol. 47, no. 4, pp. 654–670, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. Deetlefs, K. R. Seddon, and M. Shara, “Predicting physical properties of ionic liquids,” Physical Chemistry Chemical Physics, vol. 8, no. 5, pp. 642–649, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. K. Ueno, H. Tokuda, and M. Watanabe, “Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties,” Physical Chemistry Chemical Physics, vol. 12, no. 8, pp. 1649–1658, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. N. Kobrak and H. Li, “Electrostatic interactions in ionic liquids: the dangers of dipole and dielectric descriptions,” Physical Chemistry Chemical Physics, vol. 12, no. 8, pp. 1922–1932, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. N. Winterton, “Solubilization of polymers by ionic liquids,” Journal of Materials Chemistry, vol. 16, no. 44, pp. 4281–4293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Lou, S. Kang, K. C. Ko, and J. Y. Lee, “Solubility of small molecule in ionic liquids: a model study on the ionic size effect,” Journal of Physical Chemistry B, vol. 111, no. 45, pp. 13047–13051, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. D. Rogers and K. R. Seddon, “Ionic liquids—solvents of the future?” Science, vol. 302, no. 5646, pp. 792–793, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. R. M. Lynden-Bell, M. G. Del Pópolo, T. G.A. Youngs et al., “Simulations of ionic liquids, solutions, and surfaces,” Accounts of Chemical Research, vol. 40, no. 11, pp. 1138–1145, 2007. View at Publisher · View at Google Scholar · View at PubMed
  11. R. M. Lynden-Bell, “Screening of pairs of ions dissolved in ionic liquids,” Physical Chemistry Chemical Physics, vol. 12, no. 8, pp. 1733–1740, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. T. L. Greaves and C. J. Drummond, “Protic ionic liquids: properties and applications,” Chemical Reviews, vol. 108, no. 1, pp. 206–237, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. N. V. Plechkova and K. R. Seddon, “Applications of ionic liquids in the chemical industry,” Chemical Society Reviews, vol. 37, no. 1, pp. 123–150, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. S. Brazel and R. D. Rogers, Ionic liquids in Polymer Systems: Solvents, Additives, and Novel Applications, ACS Symposium Series 913, American Chemical Society, Washington, DC, USA, 2005.
  15. J. N. A. Canongia Lopes and A. A. H. Pádua, “Nanostructural organization in ionic liquids,” Journal of Physical Chemistry B, vol. 110, no. 7, pp. 3330–3335, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. Y. Wang and G. A. Voth, “Tail aggregation and domain diffusion in ionic liquids,” Journal of Physical Chemistry B, vol. 110, no. 37, pp. 18601–18608, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. B. L. Bhargava, R. Devane, M. L. Klein, and S. Balasubramanian, “Nanoscale organization in room temperature ionic liquids: a coarse grained molecular dynamics simulation study,” Soft Matter, vol. 3, no. 11, pp. 1395–1400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Triolo, O. Russina, H. J. Bleif, and E. Di Cola, “Nanoscale segregation in room temperature ionic liquids,” Journal of Physical Chemistry B, vol. 111, no. 18, pp. 4641–4644, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. T. Ueki and M. Watanabe, “Macromolecules in ionic liquids: progress, challenges, and opportunities,” Macromolecules, vol. 41, no. 11, pp. 3739–3749, 2008. View at Publisher · View at Google Scholar
  20. P. Kubisa, “Application of ionic liquids as solvents for polymerization processes,” Progress in Polymer Science, vol. 29, no. 1, pp. 3–12, 2004. View at Publisher · View at Google Scholar
  21. J. M. Virgili, A. Hexemer, J. A. Pople, N. P. Balsara, and R. A. Segalman, “Phase behavior of polystyrene-block-poly(2-vinylpyridine) copolymers in a selective ionic liquid solvent,” Macromolecules, vol. 42, no. 13, pp. 4604–4613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. He, P. G. Boswell, P. Bühlmann, and T. P. Lodge, “Ion gels by self-assembly of a triblock copolymer in an ionic liquid,” Journal of Physical Chemistry B, vol. 111, no. 18, pp. 4645–4652, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. P. M. Simone and T. P. Lodge, “Lyotropic phase behavior of polybutadiene-poly (ethylene oxide) diblock copolymers in ionic liquids,” Macromolecules, vol. 41, no. 5, pp. 1753–1759, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Tamura, T. Ueki, K. Ueno, K. Kodama, and M. Watanabe, “Thermosensitive self-assembly of diblock copolymers with lower critical micellization temperatures in an ionic liquid,” Macromolecules, vol. 42, no. 16, pp. 6239–6244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Virgili, M. L. Hoarfrost, and R. A. Segalman, “Effect of an ionic liquid solvent on the phase behavior of block copolymers,” Macromolecules, vol. 43, no. 12, pp. 5417–5423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. L. V. Zherenkova, P. V. Komarov, and A. S. Pavlov, “Long-range correlations in polymer-containing ionic liquids: the case of good solubility,” Journal of Physical Chemistry Letters, vol. 1, no. 8, pp. 1186–1190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. L. T. Costa and M. C. C. Ribeiro, “Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. I. Structural properties,” Journal of Chemical Physics, vol. 124, pp. 184902–184908, 2006.
  28. A. A. Aerov, A. R. Khokhlov, and I. I. Potemkin, “Why ionic liquids can possess extra solvent power,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16205–16207, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. G. Curro and K. S. Schweizer, “Theory of polymer melts: an integral equation approach,” Macromolecules, vol. 20, no. 8, pp. 1928–1934, 1987. View at Scopus
  30. D. Chandler and H. C. Andersen , “Optimized cluster expansions for classical fluids. II. Theory of molecular liquids,” Journal of Chemical Physics, vol. 57, pp. 1930–1937, 1972.
  31. C. Y. Shew and A. Yethiraj, “Computer simulations and integral equation theory for the structure of salt-free rigid rod polyelectrolyte solutions: explicit incorporation of counterions,” The Journal of Chemical Physics, vol. 110, no. 23, pp. 11599–11607, 1999. View at Scopus
  32. M. Dymitrowska and L. Belloni, “Integral equation theory of flexible polyelectrolytes. I. Debye-Hückel approach,” The Journal of Chemical Physics, vol. 109, no. 11, pp. 4659–4669, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. L. V. Zherenkova, P. G. Khalatur, and A. R. Khokhlov, “Solution properties of charged quasi-random copolymers: integral equation theory,” The Journal of Chemical Physics, vol. 119, no. 13, pp. 6959–6972, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Bruzzone, M. Malvaldi, and C. Chiappe, “A RISM approach to the liquid structure and solvation properties of ionic liquids,” Physical Chemistry Chemical Physics, vol. 9, no. 41, pp. 5576–5581, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Bruzzone, M. Malvaldi, and C. Chiappe, “Solvation thermodynamics of alkali and halide ions in ionic liquids through integral equations,” The Journal of Chemical Physics, vol. 129, no. 7, Article ID 074509, 2008. View at Publisher · View at Google Scholar · View at PubMed
  36. L. V. Zherenkova and P. G. Khalatur, “Nanostructure self-organization of ionic liquids,” Russian Journal of Physical Chemistry A, vol. 84, no. 6, pp. 987–993, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Malvaldi, S. Bruzzone, C. Chiappe, S. Gusarov, and A. Kovalenko, “Ab initio study of ionic liquids by KS-DFT/3D-RISM-KH theory,” Journal of Physical Chemistry B, vol. 113, no. 11, pp. 3536–3542, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. D. Roy, N. Patel, S. Conte, and M. Maroncelli, “Dynamics in an idealized ionic liquid model,” Journal of Physical Chemistry B, vol. 114, no. 25, pp. 8410–8424, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. W. Jiang, Y. Wang, T. Yan, and G. A. Voth, “A multiscale coarse-graining study of the liquid/vacuum interface of room-temperature ionic liquids with alkyl substituents of different lengths,” Journal of Physical Chemistry C, vol. 112, no. 4, pp. 1132–1139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Trulsson, J. Algotsson, J. Forsman, and C. E. Woodward, “Differential capacitance of room temperature ionic liquids: the role of dispersion forces,” Journal of Physical Chemistry Letters, vol. 1, no. 8, pp. 1191–1195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Perera, “Influence of solute-solvent interactions on the local solvent density augmentation in supercritical fluids: an integral equation study,” The Journal of Chemical Physics, vol. 115, no. 13, pp. 6115–6129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. K. S. Schweizer and A. Yethiraj, “Polymer reference interaction site model theory: new molecular closures for phase separating fluids and alloys,” The Journal of Chemical Physics, vol. 98, no. 11, pp. 9053–9079, 1993. View at Scopus
  43. D. Laria, D. Wu, and D. Chandler, “Reference interaction site model polaron theory of the hydrated electron,” The Journal of Chemical Physics, vol. 95, no. 6, pp. 4444–4453, 1991. View at Scopus